Course Syllabus

Course Information

Course Number/Section CS 6301.001

Course Title Special Topics in Computer Science: Introduction to Robot

Manipulation and Navigation

TermFall 2024Class LevelGraduateActivity TypeLecture

Days & Times Monday & Wednesday 1:00 PM – 2:15 PM

Location ECSS 2.311
Course Modality Face-to-Face

Credit Hours 3

Professor Information

Instructor Prof. Yu Xiang, Ph.D.
Office Phone (972) 883-3891

Email Address <u>yu.xiang@utdallas.edu</u>

Office Location ECSS 4.702

Office Hours Monday & Wednesday 3:00PM – 4:00PM

Teaching Assistant Information

Teaching Assistant Jishnu P

Email Address Jishnu.P@UTDallas.edu

Office Location ECSS 4.222

Office Hours Tuesday 1:00PM – 2:00PM

Course Pre-requisites, Co-requisites, and/or Other Restrictions

CS 5343 Algorithm Analysis and Data Structures

Course Description

Theory and practice of robotics. Provides in-depth overview of robot manipulation and robot navigation, including kinematics, statics, and dynamics of robot manipulators, motion planning, state estimation, environment mapping and robot control.

Student Learning Objectives/Outcomes

- Ability to understand the design of robot manipulators and wheeled robots
- Ability to understand kinematics, statics, and dynamics in robot manipulation
- Ability to solve motion planning problems in manipulation and navigation
- Ability to understand state estimation with filtering techniques in robot navigation
- Ability to perform environment mapping for robot navigation
- Ability to understand robot control for manipulation and navigation

Required Textbooks and Materials

Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition.

ISBN-13: 978-1107156302 ISBN-10: 1107156300

http://hades.mech.northwestern.edu/images/7/7f/MR.pdf

Textbooks and some other bookstore materials can be ordered online or purchased at the <u>UT Dallas</u> Bookstore.

Technical Requirements

In addition to a confident level of computer and Internet literacy, certain minimum technical requirements must be met to enable a successful learning experience. Please review the important technical requirements on the <u>Getting Started with eLearning</u> webpage.

Course Access and Navigation

This course can be accessed using your UT Dallas NetID account on the <u>eLearning</u> website. Please see the course access and navigation section of the <u>Getting Started with eLearning</u> webpage for more information.

To become familiar with the eLearning tool, please see the <u>Student eLearning Tutorials</u> webpage. UT Dallas provides eLearning technical support 24 hours a day, 7 days a week. The <u>eLearning Support Center</u> includes a toll-free telephone number for immediate assistance (1-866-588-3192), email request service, and an online chat service.

Communication

This course utilizes online tools for interaction and communication. Some external communication tools such as regular email and a web conferencing tool may also be used during the semester. For more details, please visit the <u>Student eLearning Tutorials</u> webpage for video demonstrations on eLearning tools.

Distance Learning Student Resources

Online students have access to resources including the McDermott Library, Academic Advising, The Office of Student AccessAbility, and many others. Please see the <u>eLearning Current Students</u> webpage for more information.

Server Unavailability or Other Technical Difficulties

The University is committed to providing a reliable learning management system to all users. However, in the event of any unexpected server outage or any unusual technical difficulty which prevents students from completing a time sensitive assessment activity, the instructor will provide an appropriate accommodation based on the situation. Students should immediately report any problems to the instructor and also contact the online <u>eLearning Help Desk</u>. The instructor and the eLearning Help Desk will work with the student to resolve any issues at the earliest possible time.

Grading Policy

Credit Distribution

- Homework (50%)
 - o (10%) Homework #1
 - o (10%) Homework #2
 - o (10%) Homework #3
 - o (10%) Homework #4
 - o (10%) Homework #5
- Team Project (45%)
 - o (10%) Project proposal
 - o (10%) Project mid-term report
 - o (10%) Project presentation
 - o (15%) Project final report
- In-Class Activity (5%)

Grading Scale

- A 93 or above
- A- 90-93
- B+ 87-90
- B 83-87
- B- 80-83
- C+ 77-80
- C 70-77
- F 70 or below

Course Policies

- eLearning is the official information portal for this course. Course announcements, homework, lecture slides, assignments, and grades will be communicated via eLearning
- Final course grade will be posted in Galaxy by the Records Office
- Attendance:
 - Required for mandatory class sessions. There will be 1-point deduction for each mandatory class absence in Team Project participation score (5%). There will be zero point for class participation if the number of absences is three or more.
- If you decide to stop attending class, be sure to drop or withdraw from the course. Otherwise, you risk receiving an 'F' or 'NF' for the course.
- No additional individual assignments can be assigned for extra credit. Only assignments that are available to the entire class may count toward the course grade.

UT Dallas Syllabus Policies and Procedures

Please visit http://go.utdalls.edu/syllabus-policies for other policies

Schedule

Week	Monday	Wednesday	Deadlines
1	8/19	8/21	
	Introduction to Robotics	Configuration Space	
2	8/26	8/28	HW1 release on 8/28, due 9/4 at 11:59PM CT
	Task Space, Workspace, Introduction to ROS	Course Project Description	
3	9/2	9/4	
	Labor Day	Rigid-Body Motions and Rotation Matrices	
4	9/9 Angular Velocities and Exponential Coordinates of Rotations	9/11 Matrix Logarithm of Rotations and Homogeneous Transformation Matrices	Project description release on 9/9, proposal due 9/20 at 11:59PM CT
5	9/16	9/18	
	Homogenous Transformations and Twists	Twist and Screw Axes	
6	9/23	9/25	HW2 release on 9/25, due 10/3 at 11:59PM CT
	Screw Axes and Exponential Coordinates of Rigid-Body Motions	Forward Kinematics and Denavit-Hartenberg Parameters	
7	9/30	10/2	
	Forward Kinematics and Product of Exponentials Formula	Solutions for HW1 and HW2	
8	10/7	10/9	HW3 release on 10/11, due 10/18 at 11:59PM CT
	Velocity Kinematics	Inverse Kinematics	
9	10/14	10/16	Project mid-term report due 10/29 at 11:59PM CT
	PhD Student Lecture: Ninad Khargonkar on Grasping (IROS Traveling)	PhD Student Lecture: Sai Haneesh Allu on Navigation (IROS Traveling)	
10	10/21	10/23	HW4 release on 10/25, due 11/1 at 11:59PM CT
	Motion Planning I	Motion Planning II	
11	10/28	10/30	
	Dynamics I	Dynamics II	
12	11/4	11/6	HW5 release on 11/8,
	Dynamics III	Robot Control I	due 11/15 at 11:59PM CT
13	11/11	11/13	
	Robot Control II	Robot Control III	
14	11/18	11/20	
	IRVL Visit	Guest Lecture	
15	11/25	11/27	
	Fall Break	Fall Break	
16	12/2	12/4	Project final report due 12/15 at 11:59PM CT
	Project Presentation I	Project Presentation II	

