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Why Is Object Assembly

such an important task to focus on in
robotics?



Why Is Object-Object Interaction

such an important task to focus on in
robotics?



General Purpose Robot - the dream
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Why is Object-Object Interaction

such an important task to focus on in
robotics?




Why Is Object Assembly

such an important task to focus on in
robotics?

... could lead to
robot’s physical
intelligence.
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We posit that object assembly task could
lead to this physical intelligence.



How do we enable robot to perform
object assembly tasks?



Fa
Francisco Suarez-Ruiz et al. Can robots assemble an IKEA chair?.
Sci. Robot.3,eaat6385(2018).D0I:10.1126/scirobotics.aat6385



https://doi.org/10.1126/scirobotics.aat6385

How do we enable robot to perform
object assembly tasks on novel objects?



Evidence from neuroscience and
cognitive science supports the
notion that humans employ spatio-
geometric features, mediated by
specific neural pathways and
cognitive processes, to perform
object assembly tasks.




humans employ spatio-
geometric features,

to perform
object assembly tasks.



We posit that robots need representations
that can capture spatio-geometric features
to learn novel-object assembly skills from
demonstrations.



Inspired by LEGO puzzles we
designed object pairs with various
peg and hole geometries

Assembly Process




Task: Geometry Informed Object Assembly

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task
Requiring Spatio-Geometrical Reasoning," /CRA 2024




Task: Geometry Informed Object Assembly

C—\’J

Pair of object parts with extruded
and intruded geometries ))

S

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task
Requiring Spatio-Geometrical Reasoning," /CRA 2024



Task: Geometry Informed Object Assembly
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C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of ViuaI Representations for Object Assembly Task
Requiring Spatio-Geometrical Reasoning," /CRA 2024

Sensor view



Objectives of the project

©)



Objectives of the project

Dual-arm manipulator setup in pybullet
simulation environment

To learn dual-arm manipulation
policy for object assembly

. -
Dual-arm manipulator= &
setup in the real-world

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual
Representations for Object Assembly Task Requiring Spatio-Geometrical Reasoning," /CRA 2024



Objectives of the project
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@ To learn dual-arm manipulation
2/ policy for object assembly
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C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual
Representations for Object Assembly Task Requiring Spatio-Geometrical Reasoning," /CRA 2024



Objectives of the project

X axis Z axis
translation £1cm translation £1cm
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@ To learn dual-arm manipulation
2/ policy for object assembly

/@ To implicitly perform spatio-

geometric reasoning

Y axis rotation £10° Z axis rotation 0°, 90°,

180°, or 270°
X

To be robust to grasp variations

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual
Representations for Object Assembly Task Requiring Spatio-Geometrical Reasoning," /CRA 2024



We posit that robots need representations
that can capture spatio-geometric features
to learn novel-object assembly skills from
demonstrations.
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Masked Auto
Encoder
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He, K., Chen, X., Xie, S., Li, Y., Dollar, P., & Girshick, R.
(2022). Masked autoencoders are scalable vision
learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (CVPR) (pp.
16000-16009).




Ego4D Video + R3M: Reusable Representations
for Robotic Manipulation

Efficient Robot Learning

New Environment, New Tasks

Time Contrastive Learning
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“removes the
battery...”

L1 Sparsity Penalty

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., & Gupta, A. R3M: A universal visual representation for robot manipulation.
In Conference on Robot Learning (CoRL) 2022.
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Behavior cloning from demonstrations

Good
representation

—)

Image
observation

‘ Vision
Encoder

Robot actions
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Manipulation

Policy




Dual-arm Manipulation Policy Learning
Framework

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task
Requiring Spatio-Geometrical Reasoning," /CRA 2024
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Dual-arm Manipulation Policy Learning
Framework

P

3 x (640 x 480)

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly TaSR
Requiring Spatio-Geometrical Reasoning," /CRA 2024



Dual-arm Manipulation Policy Learning
Framework

> q‘p

3 x (640 x 480) 3x (224 x 22

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly TaSR
Requiring Spatio-Geometrical Reasoning," /CRA 2024



Dual-arm Manipulation Policy Learning
Framework

PP

3 x (640 x 480) 3 x (224 x 224)




Dual-arm Manipulation Policy Learning
Framework

Vision Encoder

P — ' P

3 x (640 x 480) 3 x (224 x 224)




Dual-arm Manipulation Policy Learning
Framework

Image Embeddings
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3 x (640 x 480) 3 x (224 x 224)

Robot Proprioception
(Absolute Gripper Pose)




Dual-arm Manipulation Policy Learning
Framework

Image Embeddings

Vision Encoder
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Robot Proprioception — = IR
(Absolute Gripper Pose)
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Linear
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Dual-arm Manipulation Policy Learning
Framework

9s0d Jaddug aynjosqy
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1024

Linear + RelLU

Linear
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O values representing the gripper pose
with 3 values for x, y, z and
6 values from first two columns of
rotation matrix [Zhou et al. 2019]

Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of rotation representations in neural networks.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5745-5753, 2019.



Demonstration Data in Simulation Experiments

Sampled videos. Note: 3 views are collected in simulation experiments

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task

4 - Requiring Spgtio-Geometrical Regsoning," /CRA 2024 X ¢ % 4 A



Evaluations with Existing Visual Encoders
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To'our'surprise, the pre-trained
representations did not do well than a

ResNet trained from scratch. Non-pretrained
ResNet-18



Evaluation in Simulation

Sampled results from successful results with Non-pretrained ResNet-18 model.

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task
, Requiring Spatio-Geometrical Reasoning," /CRA 2024 4 A 4 A ) A i



X axis Z axis Y axis rotation £10° Z axis rotation 0°, 90°,
translation +1cm translation £1cm 180°, or 270°

?

YA\ YR

Non-pretrained ResNet-18 1.000 1.000 1.000 0.775
Non-pretrained ResNet-50 1.000 1.000 1.000 0.825
ImageNet ResNet-350 1.000 1.000 0.925 0.425
R3M ResNet-50 0950 1.000 1.000 0.275
CLIP ResNet-50 1.000 1.000 0.975 0.625
ImageNet ViT-base 0950 1.000 0.975 0.450
CLIP ViT-base 1.000 1.000 0.900 0.575
MAE ViT-base 1.000 1.000 0.925 0.350

TABLE I: Success rates of all visual representations trained with 100
demonstrations of indicated task variation. Non-pretrained ResNets clearly
outperform pretrained models on ZR.

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task
Requiring Spatio-Geometrical Reasoning," /CRA 2024



X axis Z axis Y axis rotation £10° Z axis rotation 0°, 90°,
translation +1cm translation £1cm 180°, or 270°

' ?

XTZR ZTZR YRZR XZTYZR

Non-pretrained ResNet-18  0.825 0.825 0.675 0.275
Non-pretrained ResNet-50  0.425 0.775 0.300 0.075
ImageNet ResNet-50 0.225 0.225 0.175 0.050
R3M ResNet-50 0.150 0.275 0.05 0.050
CLIP ResNet-50 0.500 0.575 0.250 0.150
ImageNet ViT-base 0.150 0.300 0.225 0.025
CLIP ViT-base 0.300 0.250 0.200 0.050
MAE ViT-base 0.375 0.25 0.175 0.050

TABLE II: Success rates of all visual representations trained with 1000

demonstrations of indicated task variation using all objects.

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task
Requiring Spatio-Geometrical Reasoning," /CRA 2024




X axis
translation £1cm

Z axis

translation £1cm

X

I 1|' L

Y axis rotation +10°

X

| e

Objects

XTZR

ZTZR

YZR

XZTYZR

circle
plus
minus
diamond
hexagon
u
pentagon
arrow
key

all

Decreasing
Order of Symmetry

0.85£0.07
0.931:0.04
0.80£0.03
0.77£0.06
0.7140.08
0.3740.08
0.3440.10
0.38+£0.07
0.38+£0.07
0.61+0.02

1.00£0.00
1.00£0.00
0.98+0.00
1.00£0.00
1.00£0.00
0.5440.06
0.5610.04
0.66+0.08
0.66+0.08
0.82+0.03

0.8340.05
0.77x0.01
0.4440.10
0.3310.08
0.3840.08
0.12+0.06
0.10x0.07
0.1840.03
0.17£0.04
0.37x0.05

0.43+0.07
0.384-0.04
0.33£0.10
0.34+0.08
0.30£0.08
0.17£0.03
0.1840.07
0.17£0.05
0.19£0.05
0.28+0.03

Z axis rotation 0°, 90°,

180°, or 270°
X

TABLE III: Success rates of Non-pretrained ResNet-18 trained on 1000
demonstrations including all objects. Mean and standard deviations over 3
different evaluations of 40 randomized rollouts.

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task
Requiring Spatio-Geometrical Reasoning," /CRA 2024



Qualitative Analysis of Activation Maps

”

A Y £ \ / s /
Non-pretrained Non-pretrained ImageNet ImageNet CLIP CLIP
ResNet-18 ResNet-50 ResNet-50 ViT-Base ResNet-50 ViT-Base

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task
Requiring Spatio-Geometrical Reasoning," /CRA 2024




Real world setup for data collection & evaluation

For each episode, objects are picked up with a random grasp
variation

Note: the geometrical information is not available to the robot
during grasping until seen by the top-view camera

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task
Requiring Spatio-Geometrical Reasoning," /CRA 2024



Real world setup for data collection & evaluation

(O

!

-

For each episode, objects are picked up with a random grasp
variation

Note: the geometrical information is not available to the robot
during grasping until seen by the top-view camera

The object parts are shown to the top-view camera.

Note: the extrusions and intrusions are randomized between
left and right grippers

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task

Requiring Spatio-Geometrical Reasoning," /CRA 2024



Real world setup for data collection & evaluation

For each episode, objects are picked up with a random grasp
variation

Note: the geometrical information is not available to the robot
during grasping until seen by the top-view camera

The object parts are shown to the top-view camera.

Note: the extrusions and intrusions are randomized between
left and right grippers

Scripted expert trajectories are used to perform the assembly
task to collect the demonstrations

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task
Requiring Spatio-Geometrical Reasoning," /CRA 2024




Real world setup for data collection & evaluation

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual
Representations for Object Assembly Task Requiring Spatio-Geometrical Reasoning," /CRA 2024

For each episode, objects are picked up with a random grasp
variation

Note: the geometrical information is not available to the robot
during grasping until seen by the top-view camera

The object parts are shown to the top-view camera.

Note: the extrusions and intrusions are randomized between
left and right grippers

Scripted expert trajectories are used to perform the assembly
task to collect the demonstrations

Object parts are placed back on the supporting wedges )>
before grasping for the next episode in data




Real World Demonstration Data Examples
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Real World Evaluation

Sampled results from successful experiments. Note: real world experiments do not use wrist camera views
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- Winge, R. az, W. Yuan an S uatmg Ebustness of Visual R ons for Object Assembly Task ) :
qumng Spatio-Geometrical Reasoning, "ICRA 2024 ' : < j ;




Real World Failure Examples

Sampled results from experiments. One from each grasp variation is shown.

Z axis rotation 0°, 90°, X axis Y axis rotation £10°

180°, S)(r 270° translation +1cm

C. Ku,. C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluathg’?obustness of Visual Representations for Object Assembly?ask
Requiring Spatio-Geometrical Reasoning," /CRA 2024

.



We experimented on a number of things!

What if we can finetune the pre-
trained models?

What if we give more data?

How much impact does
proprioception have?

Does object texture help in
performance?

How does the model perform when
the geometries are perturbed from
the training distribution?

2024 IEEE International Conference on Robotics and Automation (ICRA)
May 13-17, 2024. Yokohama, Japan

Evaluating Robustness of Visual Representations for Object Assembly
Task Requiring Spatio-Geometrical Reasoning

Chahyon Ku!, Carl Winge!, Ryan Diaz!, Wentao Yuan? and Karthik Desingh!

Grasps with 90 deg rotations
along Z-axis of the gripper

Potential grasp variations during
the picking phase of the task

Object
Varialtions Grasp Variations Object Assembly with Di arm Manipulator in SE(3) Action Space

Fig. 1. An overview of our benchmarking setup. Benchmarking robustness under object variations (left) and grasp variations (center) of visual policy
learning methods on object assembly task with a dual-arm manipulator in SE(3) action space (right)




We posit that robots need representations
that can capture spatio-geometric features
to learn novel-object assembly skills from
demonstrations.

- No explicit object-geometric knowledge

| | R Requires
- Maybe visual information is good enough <—— F/T sensing

- Maybe pretrained visual representations are good enough to

give us these features.
Not necessarily true due to distributional shift



Auglnsert: Learning Robust Visual-Force Policies via
Data Augmentation for Object Assembly Tasks

Ryan Diaz!, Adam Imdieke!, Vivek Veeriah?, Karthik Desingh’

Input Views
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Object Shape Variations

I
Manipulated i T :
Objects |

[ Human Expert Demonstrations ] _{ Data Augmentation with Task Variations ]_ _[ Evaluation on Unseen Task Variations ]_

Fig. 1: Auglnsert is a data collection and policy evaluation pipeline aimed towards analyzing the robustness of a multisensory (vision, force-torque, and
proprioception) model with respect to different observation-level task variations in object shape, grasp pose, and visual environmental appearance. Our
framework introduces task variations to a dataset of human-collected demonstrations through a system of online data augmentation.
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Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. "Auglnsert: Learning Robust Visual-Force
Policies via Data Augmentation for Object Assembly Tasks." arXiv preprint arXiv:2410.14968 (2024).




Sensory Inputs

Proprioception

End-Effector Poses

Peg Object Hole Object [ ———

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. "Auglnsert: Learning Robust Visual-Force
Policies via Data Augmentation for Object Assembly Tasks." arXiv preprint arXiv:2410.14968 (2024).




Canonical (no variations)

Introduce observation-

level task variations

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. "Auglnsert: Learning Robust Visual-Force
Policies via Data Augmentation for Object Assembly Tasks." arXiv preprint arXiv:2410.14968 (2024).



Canonical

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh.
"Auglnsert: Learning Robust Visual-Force Policies via Data
Augmentation for Object Assembly Tasks." arXiv preprint
arXiv:2410.14968 (2024).

Task Variation

9 peg/hole shapes

6 object body shapes
(3 full size, 3 thin)

54 total object shapes

Arrow Cross

'
d

+6 more

Peg/Hole Shape

()
Octagonal | Thin Shapes
Prism  |(Peg Objects)

gV ¥
A1 1]

Cube Cylinder

Object Body Shape




Canonical Task Variation

l =L l |
X-Translation (XT) Z-Translation (ZT)

| -a ‘T

Grasp Pose

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh.
"Auglnsert: Learning Robust Visual-Force Policies via Data
Augmentation for Object Assembly Tasks." arXiv preprint
arXiv:2410.14968 (2024).




Canonical Task Variation

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. Scene Ap pearance

"Auglnsert: Learning Robust Visual-Force Policies via Data

Augmentation for Object Assembly Tasks." arXiv preprint
arXiv:2410.14968 (2024).




Task Variation

Canonical

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh.
"Auglnsert: Learning Robust Visual-Force Policies via Data

Camera Angle

Augmentation for Object Assembly Tasks." arXiv preprint
arXiv:2410.14968 (2024).




Canonical

T T
15 20
Timestep

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh.

"Auglnsert: Learning Robust Visual-Force Policies via Data
Augmentation for Object Assembly Tasks." arXiv preprint
arXiv:2410.14968 (2024).

Force (N)
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Task Variation

—— force-x
—— force-y
— force-z

T T T T
15 20 25 30
Timestep
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100 T T T T

0 5 10 15 20

Sensor Noise




Data Collection

Teleoperated demonstrations
collected in “canonical” (no variations)
environment

NS |
- 5

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh.
"Auglnsert: Learning Robust Visual-Force Policies via Data
Augmentation for Object Assembly Tasks." arXiv preprint
arXiv:2410.14968 (2024).

Human Demos

Video sped up x4




Data Collection

Online data augmentation via
trajectory replay on environments with
task variations applied

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh.
"Auglnsert: Learning Robust Visual-Force Policies via Data
Augmentation for Object Assembly Tasks." arXiv preprint
arXiv:2410.14968 (2024).

Human Demos

Data Augmentation

Video sped up x5




Model Architecture
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Model Architecture

R g S TT
Wristview — t
3x84x84
36x384 Self-Attention (x6)
_ ) *
Right s . t
Wristview — "
3x84x84 36x384 I I I I
1
Force- - g —
Torque - N "
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——
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Feed output embedding into MLP policy network, predict actions

Proprio. éot‘

1x14

)
Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. "Auglnsert: Learning Robust Visual-Force ‘
Policies via Data Augmentation for Object Assembly Tasks." arXiv preprint arXiv:2410.14968 (2024).




Policy Trained on No Variations

Frontview Wristview Force-Torque
(Visualization) (Part of Policy Input) (Part of Policy Input)

Left Arm Forces Left Arm Torques
100 3

75 4

50 4

251 .

01 01

Force (N)

—25 4 =

-50 41
— force-x -2 —— torque-x
=751 — force- y — torque-y
— force-z —— torque-z

-100

T T T T T T T T T T
—0.04 -0.02 0.00 0.02 0.04 —0.04 -0.02 0.00 0.02 0.04
Timestep Timestep

*Success rates over 50 rollouts
averaged over 6 training seeds

Left Arm Forces
100 3

Left Arm Torques

75 4

50 1

251

m)

e (N)

0

Torque (N*

—254

—50 4

—— force-x -2 —— torque-x
=751 —— force- y —— torque-y
— force-z —— torque-z

-100 T T T T T T T T T T
—0.04 —0.02 0.00 0.02 0.04 —0.04 —0.02 0.00 0.02 0.04
Timestep

Rollouts in Grasp Pose environment: 0.060 mean success rate*

Videos sped up x5



Policy Trained on Visual Variations + Sensor Noise

Frontview Wristview Force-Torque
(Visualization) (Part of Policy Input) (Part of Policy Input)

- Left Arm Forces . Left Arm Torques

75 4

50 4

251 &

(N)

—-25 4 =

—50 4

— force-x -2 —— torque-x
=751 — force-y — torque-y
— force-z — torque-z

-100

T T T T T - T T T T T
-0.04 —0.02 0.00 0.02 0.04 -0.04 —0.02 0.00 0.02 0.04
Times tep

*Success rates over 50 rollouts
averaged over 6 training seeds

Left Arm Forces Left Arm Torques

100 3

75 4

50 1

251

m)

e (N)

0

Torque (N*

—254

—504
— force-x -2 —— torque-x
—751 —— force- y —— torque-y
— force-z —— torque-z

-100 T T T T T T T T T T
—0.04 —0.02 0.00 0.02 0.04 —0.04 —0.02 0.00 0.02 0.04
Timestep

Rollouts in Grasp Pose environment: 0.173 mean success rate*

Videos sped up x5



Policy Trained on Object Shape + Grasp Variations

Frontview Wristview Force-Torque
(Visualization) (Part of Policy Input) (Part of Policy Input)

Left Arm Forces Left Arm Torques
100 3

75 4

50 1

254 P

04 04

Force (N)
N

-25 4 =

—50 4

— force-x -2 4 —— torque-x
=751 —— force- y — torque-y
— force-z — torque-z

-100 T T T T T T T T T T
—0.04 -0.02 0.00 0.02 0.04 -0.04 -0.02 0.00 0.02 0.04
Timestep

*Success rates over 50 rollouts
averaged over 6 training seeds

Left Arm Forces

Left Arm Torques
100 3

75 4

50 1

251

m)

e (N)

0

Torque (N*

—254

—50 4

-75 4

-100 T T T T T T T T T T
-0.04 -0.02 0.00 0.02 0.04 -0.04 -0.02 0.00 0.02 0.04

Rollouts in Grasp Pose environment: 0.620 mean success rate*

Videos sped up x5



Real World
Data Collection

Teleoperated demonstrations
collected in “canonical” (no
variations) environment

Human Demos




Real World Evaluation: Policy Trained on No Variations

Rollouts in Canonical environment Rollouts in Object Body Shape environment  Rollouts in Grasp Pose environment

0.900 success rate* 0.800 success rate* n_

Data augmentation may be necessary to improve robustness

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. "Auginsert: *Success rates over 20 rollouts
Learning Robust Visual-Force Policies via Data Augmentation for Object .
Assembly Tasks." arXiv preprint arXiv:2410.14968 (2024). Videos sped up x2



humans employ spatio-
geometric features,

to perform
object assembly tasks.



We posit that robots need representations
that can capture spatio-geometric features
to learn novel-object assembly skills from
demonstrations.

- No explicit object-geometric knowledge

| | R Requires
- Maybe visual information is good enough <—— F/T sensing

- Maybe pretrained visual representations are good enough to

give us these features.
Not necessarily true due to distributional shift
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- Grasp variations are hard to be robust to in object assembly
learning.

- Visual pre-trained models on internet data is not necessarily best for
object assembly — probably not the spatio-geometric features we
hoped for.

- Force-Torque data is vital during the contact-rich phase of object

assembly. Spatio-geometric feature learning should also incorporate
tactile information.

- Data augmentation tricks can help with accommodating observation
level variations in object assembly task.



Some Related Works

Peg-hole Insertion

Multi-part Assembly
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TRAIN OBJECTS TEST OBJECTS

Dasari, Sudeep, Jianren Wang, Joyce Hong, Shikhar
Bahl, Yixin Lin, Austin S. Wang, Abitha Thankaraj et

al. "RB2: Robotic Manipulation Benchmarking with a (1) Gear Assembly
Twist." In Thirty-fifth Conference on Neural Information
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Some Related Works

Reaching Alignment Insertion

[ |\ I
Sockets board- location 1 Sockets board- location 2

- O. Spector and D. Di Castro, “Insertionnet-a scalable solution
ume (ms) for insertion,” IEEE Robotics and Automation Letters, vol. 6,
M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei- no. 3, pp. 5509-5516, 2021.
Fei, A. Garg, and J. Bohg, “Making sense of vision and touch:
Self- supervised learning of multimodal representations for

contact rich tasks,” in 2019 International conference on
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Other works from RPM

“‘open the middle drawer” “put the block in the bottom drawer”

\ ” Y 4 < >4

‘move above the green button “push the yellow button® “push the maroon button
then push the green button®
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SuperQ-GRASP: Superquadrics-based Grasp Pose Estimation on
Larger Objects for Mobile-Manipulation Talk Through It: End User Directed

Xun Tu and Karthik Desingh Manipulation Learning
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