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Object Assembly, a Spatial-Geometric 
Reasoning Pathway to Physical 
Intelligence

Why is 
such an important task to focus on in 
robotics?

… could lead to 
robot’s physical 
intelligence.



A form of physical intelligence 
is where the agent is able to 
interact with novel objects 
seamlessly.



We posit that object assembly task could 
lead to this physical intelligence.



How do we enable robot to perform 
object assembly tasks?



Francisco Suárez-Ruiz et al. Can robots assemble an IKEA chair?.
Sci. Robot.3,eaat6385(2018).DOI:10.1126/scirobotics.aat6385

https://doi.org/10.1126/scirobotics.aat6385


How do we enable robot to perform 
object assembly tasks on novel objects?



Evidence from neuroscience and 
cognitive science supports the 
notion that humans employ spatio-
geometric features, mediated by 
specific neural pathways and 
cognitive processes, to perform 
object assembly tasks.
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We posit that robots need representations 
that can capture spatio-geometric features 
to learn novel-object assembly skills from 
demonstrations.



Assembly ProcessInspired by LEGO puzzles we 
designed object pairs with various 
peg and hole geometries



Task: Geometry Informed Object Assembly

Dual-arm Robot is tasked to assemble 
the object parts held by its grippers

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



Task: Geometry Informed Object Assembly

Dual-arm Robot is tasked to assemble 
the object parts held by its grippers

Pair of object parts with extruded 
and intruded geometries

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



Task: Geometry Informed Object Assembly

Dual-arm Robot is tasked to assemble 
the object parts held by its grippers

Sensor view
C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 

Requiring Spatio-Geometrical Reasoning," ICRA 2024



Objectives of the project



Objectives of the project

To learn dual-arm manipulation 
policy for object assembly

Dual-arm manipulator setup in pybullet 
simulation environment

Dual-arm manipulator 
setup in the real-world

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual 
Representations for Object Assembly Task Requiring Spatio-Geometrical Reasoning," ICRA 2024



Objectives of the project

To implicitly perform spatio-
geometric reasoning

One unique solution
Order-1

Two rotationally symmetric solutions
Order-2

Four rotationally symmetric 
solutions

Order-4

To learn dual-arm manipulation 
policy for object assembly

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual 
Representations for Object Assembly Task Requiring Spatio-Geometrical Reasoning," ICRA 2024



Objectives of the project

To be robust to grasp variations

To implicitly perform spatio-
geometric reasoning

To learn dual-arm manipulation 
policy for object assembly

X axis 
translation ±1cm

X

Z
Y

Z axis 
translation ±1cm

X

Z
Y

Z axis rotation 0°, 90°, 
180°, or 270°

X

Y
Z

Y axis rotation ±10°

X

Z
Y

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual 
Representations for Object Assembly Task Requiring Spatio-Geometrical Reasoning," ICRA 2024



We posit that robots need representations 
that can capture spatio-geometric features 
to learn novel-object assembly skills from 
demonstrations.



CLIP MAE R3M



CLIP MAE R3M

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, 
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen 

Krueger, and Ilya Sutskever. Learning Transferable 
Visual Models From Natural Language Supervision. In 
International Conference on Machine Learning (ICML) 

2021, Vol. 139. 8748–8763.

Contrastive Language 
Image Pre-training



CLIP MAE R3M

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. 
(2022). Masked autoencoders are scalable vision 
learners. In Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition (CVPR) (pp. 
16000-16009).

Masked Auto 
Encoder



CLIP MAE R3M

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., & Gupta, A. R3M: A universal visual representation for robot manipulation.
In Conference on Robot Learning (CoRL) 2022.



CLIP MAE R3M

Vision 
Encoder



CLIP
MAER3M Manipulation 

Policy
Vision 

Encoder

Image 
observation

Good 
representation Robot actions

Behavior cloning from demonstrations



Dual-arm Manipulation Policy Learning 
Framework

Left-wrist view Right-wrist view

Top-down view

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



Dual-arm Manipulation Policy Learning 
Framework

Left-wrist view Right-wrist view

Top-down view

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



Dual-arm Manipulation Policy Learning 
Framework

Top-down view

Left-wrist view Right-wrist view

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024
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Dual-arm Manipulation Policy Learning 
Framework



9 values representing the gripper pose 
with 3 values for x, y, z and 

6 values from first two columns of 
rotation matrix [Zhou et al. 2019]

Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of rotation representations in neural networks. 
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5745–5753, 2019.

Dual-arm Manipulation Policy Learning 
Framework



Simulation Data CollectionDemonstration Data in Simulation Experiments
Sampled videos. Note: 3 views are collected in simulation experiments

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



Evaluations with Existing Visual Encoders

CLIP ResNet-
50CLIP ViT-B/16 MAE ViT-B/16

ImageNet 
ResNet-50

ImageNet 
ViT-B/16

R3M
ResNet-50

Non-pretrained 
ResNet-18

Non-pretrained 
ResNet-50

To our surprise, the pre-trained 
representations did not do well than a 
ResNet trained from scratch.



Evaluation in Simulation
Sampled results from successful results with Non-pretrained ResNet-18 model.

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024
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Decreasing
Order of Symmetry
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C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



Qualitative Analysis of Activation Maps

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



Real world setup for data collection & evaluation
For each episode, objects are picked up with a random grasp 
variation

Note: the geometrical information is not available to the robot 
during grasping until seen by the top-view camera

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



Real world setup for data collection & evaluation
For each episode, objects are picked up with a random grasp 
variation

Note: the geometrical information is not available to the robot 
during grasping until seen by the top-view camera

The object parts are shown to the top-view camera.

Note: the extrusions and intrusions are randomized between 
left and right grippers
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Real world setup for data collection & evaluation
For each episode, objects are picked up with a random grasp 
variation

Note: the geometrical information is not available to the robot 
during grasping until seen by the top-view camera

The object parts are shown to the top-view camera.

Note: the extrusions and intrusions are randomized between 
left and right grippers

Scripted expert trajectories are used to perform the assembly 
task to collect the demonstrations 

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
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Real world setup for data collection & evaluation
For each episode, objects are picked up with a random grasp 
variation

Note: the geometrical information is not available to the robot 
during grasping until seen by the top-view camera

The object parts are shown to the top-view camera.

Note: the extrusions and intrusions are randomized between 
left and right grippers

Scripted expert trajectories are used to perform the assembly 
task to collect the demonstrations 

Object parts are placed back on the supporting wedges 
before grasping for the next episode in data 

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual 
Representations for Object Assembly Task Requiring Spatio-Geometrical Reasoning," ICRA 2024



Real World Demonstration Data Examples

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



Real World Evaluation
Sampled results from successful experiments. Note: real world experiments do not use wrist camera views

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



Real World Failure Examples
Z axis rotation 0°, 90°, 
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Sampled results from failed experiments. One from each grasp variation is shown.

C. Ku, C. Winge, R. Diaz, W. Yuan and K. Desingh, "Evaluating Robustness of Visual Representations for Object Assembly Task 
Requiring Spatio-Geometrical Reasoning," ICRA 2024



We experimented on a number of things!

• What if we can finetune the pre-
trained models?

• What if we give more data?

• How much impact does 
proprioception have?

• Does object texture help in 
performance?

• How does the model perform when 
the geometries are perturbed from 
the training distribution?



We posit that robots need representations 
that can capture spatio-geometric features 
to learn novel-object assembly skills from 
demonstrations.

• No explicit object-geometric knowledge 

• Maybe visual information is good enough

• Maybe pretrained visual representations are good enough to 
give us these features.

Requires 
F/T sensing

Not necessarily true due to distributional shift





Peg Object

Hole Object

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. "AugInsert: Learning Robust Visual-Force 
Policies via Data Augmentation for Object Assembly Tasks." arXiv preprint arXiv:2410.14968 (2024).



Peg Object Hole Object

Left Wristview

Force-Torque

Proprioception
End-Effector Poses

Sensory Inputs

Right Wristview

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. "AugInsert: Learning Robust Visual-Force 
Policies via Data Augmentation for Object Assembly Tasks." arXiv preprint arXiv:2410.14968 (2024).



Canonical (no variations)

Introduce observation-
level task variations

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. "AugInsert: Learning Robust Visual-Force 
Policies via Data Augmentation for Object Assembly Tasks." arXiv preprint arXiv:2410.14968 (2024).



Canonical Task Variation

9 peg/hole shapes
6 object body shapes

(3 full size, 3 thin)
54 total object shapesDiaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. 

"AugInsert: Learning Robust Visual-Force Policies via Data 
Augmentation for Object Assembly Tasks." arXiv preprint 

arXiv:2410.14968 (2024).



Grasp Pose

Canonical Task Variation

X-Translation (XT) Z-Translation (ZT)

Y-Rotation (YR) Z-Rotation (ZR)

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. 
"AugInsert: Learning Robust Visual-Force Policies via Data 
Augmentation for Object Assembly Tasks." arXiv preprint 

arXiv:2410.14968 (2024).



Canonical Task Variation

Scene AppearanceDiaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. 
"AugInsert: Learning Robust Visual-Force Policies via Data 
Augmentation for Object Assembly Tasks." arXiv preprint 

arXiv:2410.14968 (2024).



Canonical

Task Variation

Camera AngleDiaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. 
"AugInsert: Learning Robust Visual-Force Policies via Data 
Augmentation for Object Assembly Tasks." arXiv preprint 

arXiv:2410.14968 (2024).



Canonical Task Variation

Sensor Noise

Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. 
"AugInsert: Learning Robust Visual-Force Policies via Data 
Augmentation for Object Assembly Tasks." arXiv preprint 

arXiv:2410.14968 (2024).



Teleoperated demonstrations 
collected in “canonical” (no variations) 

environment 

Data Collection

Video sped up x4
Video sped up x5
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Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. 
"AugInsert: Learning Robust Visual-Force Policies via Data 
Augmentation for Object Assembly Tasks." arXiv preprint 

arXiv:2410.14968 (2024).



… ……

Data Collection
Online data augmentation via 

trajectory replay on environments with 
task variations applied

Video sped up x5
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Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. 
"AugInsert: Learning Robust Visual-Force Policies via Data 
Augmentation for Object Assembly Tasks." arXiv preprint 

arXiv:2410.14968 (2024).
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Feed output embedding into MLP policy network, predict actions
Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. "AugInsert: Learning Robust Visual-Force 

Policies via Data Augmentation for Object Assembly Tasks." arXiv preprint arXiv:2410.14968 (2024).



Videos sped up x5

Rollouts in Canonical environment:

Policy Trained on No Variations
Frontview 

(Visualization)
Wristview 

(Part of Policy Input)
Force-Torque 

(Part of Policy Input)

*Success rates over 50 rollouts 
averaged over 6 training seeds

0.980 mean success rate*

Rollouts in Grasp Pose environment: 0.060 mean success rate*



Simulation Evaluation:
Policy Trained on Visual Variations + Sensor Noise

Videos sped up x5

Frontview 
(Visualization)

Wristview 
(Part of Policy Input)

Force-Torque 
(Part of Policy Input)

*Success rates over 50 rollouts 
averaged over 6 training seeds

Rollouts in Canonical environment: 0.973 mean success rate*

Rollouts in Grasp Pose environment: 0.173 mean success rate*



Simulation Evaluation:
Policy Trained on Object Shape + Grasp Variations

Videos sped up x5

Frontview 
(Visualization)

Wristview 
(Part of Policy Input)

Force-Torque 
(Part of Policy Input)

*Success rates over 50 rollouts 
averaged over 6 training seeds

Rollouts in Canonical environment: 0.957 mean success rate*

Rollouts in Grasp Pose environment: 0.620 mean success rate*



Teleoperated demonstrations 
collected in “canonical” (no 

variations) environment 

Real World
Data Collection

Videos sped up x4

Human Demos



Real World Evaluation: Policy Trained on No Variations

Rollouts in Canonical environment
0.900 success rate*

Rollouts in Grasp Pose environment
0.150 success rate*

Rollouts in Object Body Shape environment
0.800 success rate*

Videos sped up x2
*Success rates over 20 rollouts

Data augmentation may be necessary to improve robustness
Diaz, Ryan, Adam Imdieke, Vivek Veeriah, and Karthik Desingh. "AugInsert: 

Learning Robust Visual-Force Policies via Data Augmentation for Object 
Assembly Tasks." arXiv preprint arXiv:2410.14968 (2024).



Evidence from neuroscience and 
cognitive science supports the 
notion that humans employ spatio-
geometric features, mediated by 
specific neural pathways and 
cognitive processes, to perform 
object assembly tasks.



We posit that robots need representations 
that can capture spatio-geometric features 
to learn novel-object assembly skills from 
demonstrations.

• No explicit object-geometric knowledge 

• Maybe visual information is good enough

• Maybe pretrained visual representations are good enough to 
give us these features.

Requires 
F/T sensing

Not necessarily true due to distributional shift



Take aways!
• Grasp variations are hard to be robust to in object assembly 

learning.

• Visual pre-trained models on internet data is not necessarily best for 
object assembly – probably not the spatio-geometric features we 
hoped for. 

• Force-Torque data is vital during the contact-rich phase of object 
assembly. Spatio-geometric feature learning should also incorporate 
tactile information. 

• Data augmentation tricks can help with accommodating observation 
level variations in object assembly task. 



Some Related Works
Peg-hole Insertion

Gao, Wei, and Russ Tedrake. "kpam 2.0: 
Feedback control for category-level robotic 
manipulation." IEEE Robotics and Automation 
Letters 6, no. 2 (2021): 2962-2969.

Shape Sorting

Dasari, Sudeep, Jianren Wang, Joyce Hong, Shikhar 
Bahl, Yixin Lin, Austin S. Wang, Abitha Thankaraj et 
al. "RB2: Robotic Manipulation Benchmarking with a 
Twist." In Thirty-fifth Conference on Neural Information 
Processing Systems Datasets and Benchmarks Track 
(Round 2).

Multi-part Assembly

Mandlekar, Ajay, Soroush Nasiriany, Bowen 
Wen, Iretiayo Akinola, Yashraj Narang, Linxi 
Fan, Yuke Zhu, and Dieter Fox. "MimicGen: A 
Data Generation System for Scalable Robot 
Learning using Human Demonstrations." In 7th 
Annual Conference on Robot Learning.



M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-
Fei, A. Garg, and J. Bohg, “Making sense of vision and touch: 

Self- supervised learning of multimodal representations for 
contact rich tasks,” in 2019 International conference on 

robotics and automation (ICRA). IEEE, 2019, pp. 8943–8950.

O. Spector and D. Di Castro, “Insertionnet-a scalable solution 
for insertion,” IEEE Robotics and Automation Letters, vol. 6, 

no. 3, pp. 5509–5516, 2021.

Some Related Works



Other works from RPM Lab
Grasping for Manipulation 

of Larger Objects
End User Directed Robot Learning 

Via Natural Language Based Interaction
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