Language Guided Manipulation System

Outline

Problem Statement

Tools & Libraries

Robot Model

Flow Diagram

<u>Demo</u>

Evaluation Metrics

Applications

Future Work

Problem Statement

- This project involves complex language understanding and response mechanisms for the Robot using the PyBullet Library and Simulation Environment along with tailored NLP libraries.
- The challenge lies in enabling the robot to understand and respond to natural language in the Language Guided Manipulation System simulation, offering valuable insights into human-robot communication.
- This project promises to enhance the robot interactions with humans through advanced language processing.

Tools & Libraries

NLP

- SpeechRecognition
- PyAudio
- spaCy
- NLTK

Robotics

- PyBullet
- PyBullet_Data

Robot Model

Robot Model - R2D2

Links: axis, leg1, leg2, body, head, rod, box.

Joints: leg1connect, leg2connect, tilt, swivel, periscope, boxconnect.

Geometry: Each link has specific geometrical shapes (cylinder, box, sphere) with defined sizes, and the joints have specific motion limits and axes

Colors: Gray, White & Blue.

Collision Properties: Collision aspects are defined for each link with specific geometries and contact coefficients.

Flow Diagram

Demo

Evaluation Metrics

Accuracy of Language Understanding (ALU)

$$ALU = \frac{(CorrectlyInterpretedInputs)}{(TotalInputs)} * 100$$

Response Appropriateness Score (RAS)

$$RAS = rac{(ContextuallyAppropriateResponses)}{(TotalResponses)}*100$$

We tested this by inputting values for around 80 times 71 were successful.

Real World Applications

- → Assistive Robotics
- → Industrial Automation
- → Education and Research
- → Healthcare
- → Entertainment & Hospitality
- → Space Exploration

Future Work

- Advanced AI and NLP
- Enhanced Sensory Capabilities
- Improved Mobility and Dexterity
- Autonomy and Decision Making
- Human Robot Interaction
- Energy Efficiency & Sustainability

