Group 4: Autonomous Sorting of Trash Objects Based on Structure using Gazebo Robot Simulation

Dhyakesh Soundararajan, Saffat Ahmed, Kevan Mehta

Introduction

Goal: Create autonomous robot that can detect and sort various trash objects

Reason: Assisting with proper disposal and sorting of waste

Objectives:

- Detecting and Differentiating between various objects
 - DOPE Deep Object Pose Estimation
 - Image Classification with Tensorflow
- Consistent and Accurate Grasping of objects
 - Movelt Motion Planning Framework

Related Work - DOPE

Pre-trained Models for Pose Estimation

- Utilized pre-trained models for initial pose estimation.
- Requires all objects to be known ahead of time
 - Useful for small dataset testing in simulation
 - Potentially not as useful in real world circumstance, too many shapes and objects to train all of them

ROS Implementation Challenges

- Struggled to get working on our systems. Missing certain files and libraries
- If implemented successfully, would require additional training for additional models if needed
- May attempt implementation again in future

Related Work - Image Classification

Model summary

Model: "sequential_8"		
Layer (type)	Output Shape	Param #
conv2d_25(Conv2D)		
max_pooling2d_25 (MaxPooli ng2D)	(None, 111, 111, 32	2) 0
conv2d_26 (Conv2D)	(None, 109, 109, 64	18496
max_pooling2d_26 (MaxPooli ng2D)	(None, 54, 54, 64)	0
conv2d_27 (Conv2D)	(None, 52, 52, 128)	73856
max_pooling2d_27 (MaxPooli ng2D)	(None, 26, 26, 128)) 0
flatten_8 (Flatten)	(None, 86528)	0
dense_16 (Dense)	(None, 128)	11075712
dense_17 (Dense)	(None, 2)	258
Total params: 11169218 (42.61 MB) Trainable params: 11169218 (42.61 MB) Non-trainable params: 0 (0.00 Byte)		

Implementation

- Gazebo for Simulations and Collecting Classification Images
- Movelt for Grasping
- Classification using Tensorflow
- Current Model trained on boxes and cans

Collecting Sample Input Images Demo

https://youtu.be/Qx4bh3lSySg

Demonstration of Current Implementation

https://youtu.be/W6Qgq94Xr7E

Experiments and Data

Experiments and Data

Training and Validation accuracy

Graph(5 epochs)

Analysis of Results/Limitations

Testing Data sample

To evaluate the model

Analysis of Results/Limitations

Confusion matrix Box [[7, 3] Can [0, 10]]

Accuracy: 0.85

Testing model on the fetch robot camera

Future Work

Improve Object Recognition

- Enhance the robot's ability to recognize diverse trash items.
- Handle deformable or complex objects effectively.
- Distinguish between different materials for precise sorting.

Improve Grasping

- Implement models with defined potential grasps
- Using CNN's for grasp learning
- Focus on top-down grasping instead of 6D grasping

References

- J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, "Deep object pose estimation for semantic robotic grasping of household objects," arXiv preprint arXiv:1809.10790, 2018.
- X. Zhu, D. Wang, O. Biza, G. Su, R. Walters, and R. Platt, "Sample efficient grasp learning using equivariant models," arXiv preprint arXiv:2202.09468, 2022.
- Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit! [rostopics]. IEEE Robotics & Automation Magazine, 19(1):18–19, 2012.

Thank You

Questions?