

Large Language Model Based Virtual Robot Pick-Place Manipulation

Group 18:

Shashwat Nayak, Zeel Desai, Rohan Jayachandran

Introduction

Project Concept:

- Integration of Large Language Models (LLMs) with robotic actions.
- Simulated environment for robot and language model interaction.

Importance in Smart Environments:

- Enhancing robot intuitiveness and responsiveness in homes and workplaces.
- Advancing user-friendly robotics for everyday tasks.

Project Aim:

- Employing LLMs for context-aware robotic actions.
- Demonstrate practical LLM applications in household scenarios.

Background and Inspiration

Inspiration

- Title: "Do As I Can, Not As I Say: Grounding Language in Robotic Affordances"
- Key Insight: Potential of LLMs in enhancing robotic functionalities

Bridging Theoretical and Practical Realms

- Challenge: Aligning LLM's theoretical language comprehension with practical robotic tasks
- Innovation: Context-aware and LLM-driven robotic responses for real-world applications
- Extending 'SayCan' Basic Demo Concept

Core Functionality of SayCan

Semantic Knowledge Utilization

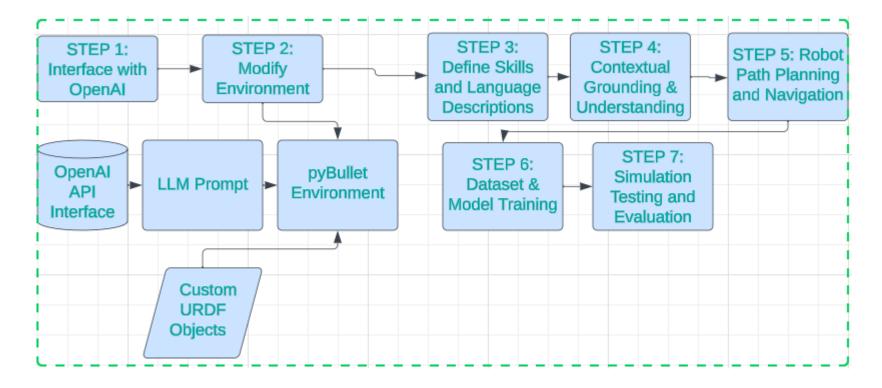
Leverages the extensive semantic understanding of LLMs.

Contextual Grounding

Ensures proposed actions are both feasible and appropriate for the context

Robot as the Interface

Acts as the 'hands and eyes' for the language model.


Iterative Task Execution

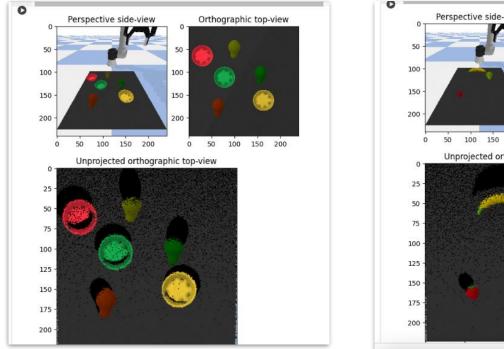
User instructs, robot interprets and acts, then awaits further instructions.

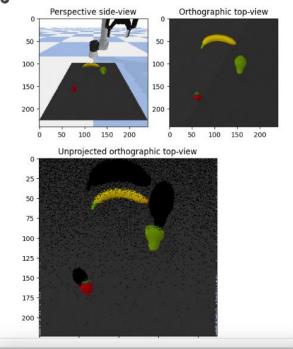
Skill Probability Scoring

Display of skill selection using combined probability scores.

Approach and Methodology

Robot - UR5e and Gripper 2F85

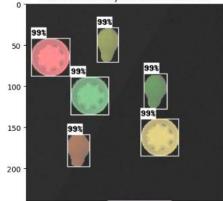

- The UR5e is a lightweight, adaptable collaborative industrial robot designed for medium-duty applications. It offers ultimate flexibility and seamless integration into a wide range of applications
- Technical Specifications: Payload: Up to 5 kg (11 lbs).Reach: 850 mm.Repeatability: 0.03 mm.
- Gripper 2F85 is an adaptable gripper that can be attached to universal robots. Stroke: 85 mm Grip Force: 20 to 235 N (4.5 to 50 lbf) Form-fit Grip Payload: 5 kg (11 lbs) Friction Grip Payload: 5 kg (11 lbs) Gripper Weight: 0.9 kg (2 lbs) Closing Speed: 20 to 150 mm/s (0.8 to 5.9 in/s).



Technical Implementation

- 1. Implemented a Tabletop pybullet environment with a UR5e and 2-finger gripper, using forward and inverse kinematics.
- 2. Experimented with loading different objects from open source object collections
- 3. Successfully loaded household objects from the YCB Dataset.
- 4. Used a pre-trained ViLD model, based on OpenCV to perform object recognition.
- 5. Fine-tuned the pick and place primitives for gripping the non-standard objects used in our implementation.
- 6. Implemented communication with OpenAI API for LLM usage
- 7. Extended the block & bowl tabletop template on our objects
- 8. Tried different LLM models such as 'text-ada-001', 'text-curie-002', and 'text-davinci-002'
- 9. Used a pre-trained CLIP model to make combined embeddings for image and text
- 10. Provided 'gpt-context' based on the required configurations for SayCan
- 11. Tried to execute end to end model for SayCan

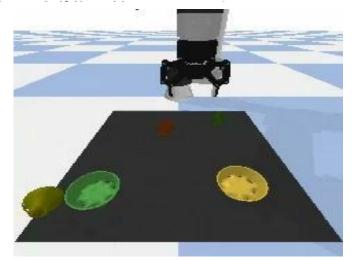
Experimental Tabletop Setup


Key Challenges and Solutions

- Introducing new objects with correct orientation and collision properties.
- CLIPort to get new dataset, using new generated dataset, 0 reward error, RL is not implemented properly for new objects.
- Training with new objects/dataset not sufficient (we ran for 300 epochs, 3-4 objects, Required is around 40000 epochs, actual paper uses NVIDIA DGX)
- Open AI API usage issue (Rate limit Error)

Results - ViLD Object Detection

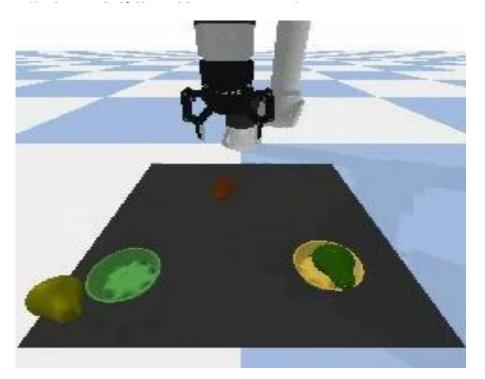
Building text embeddings... 100%| Found a yellow circular bowl with score: 0.33460823 Found a green circular bowl with score: 0.32902828 Found a green circular bowl with score: 0.31244054 Found a green fruit with score: 0.3059148 Found a green fruit with score: 0.26679696 Found a red fruit with score: 0.26144752 WARNING:py.warnings:<ipython-input-172-59421901b57c>:83: DeprecationWarning: getsize display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]


WARNING:py.warnings:<ipython-input-172-59421901b57c>:94: DeprecationWarning: getsize text_width, text_height = font.getsize(display_str)

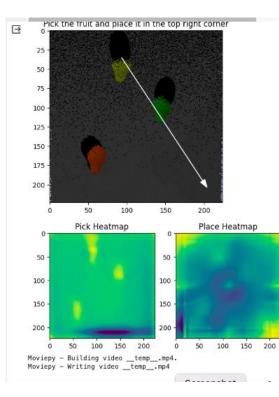
ViLD detected objects and RPN scores.

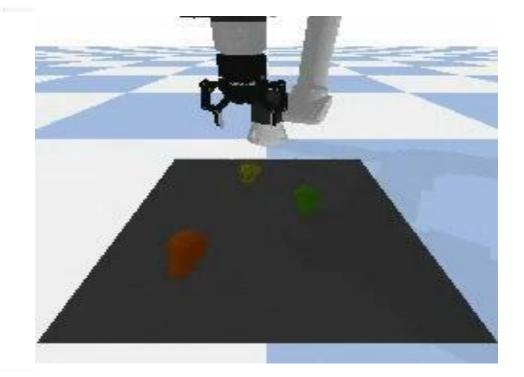
Results - Prompt based Direct Manipulation

Input: Pick the green fruit and place it on the yellow bowl.



Input: Pick the green fruit and place it on the bottom left corner.




Results - Prompt based Direct Manipulation

Input: Pick the red fruit and place it on the green bowl.

CLIPort Based Demo

SayCan - LLM Scoring Example - Curie

[] query = "To pick all fruits and place it on their same colored bowls, I should:\n"
 options = make_options(PICK_TARGETS, PLACE_TARGETS)
 scores, response = gpt3_scoring(query, options, engine='text-curie-001', limit_num_options=24, option_start='\n', verbose=True)

Considering 24 options Scoring 24 options cache hit, returning -67.574663860178 robot.pick_and_place(green fruit, green bowl) -67.85551619967801 robot.pick and place(red fruit, red bowl) robot.pick_and_place(yellow fruit, yellow bowl) -68,23578072867801 -68,49527550967801 robot.pick and place(yellow fruit, green bowl) -70.265747439678robot.pick_and_place(yellow fruit, red bowl) -70,501145216678 robot.pick and place(green fruit, red bowl) -71,07650843667801 robot.pick and place(green fruit, yellow bowl) -72.733631177678 robot.pick and place(red fruit, green bowl) -73.528250517678 robot.pick and place(red fruit, yellow bowl) robot.pick_and_place(red_fruit, middle) -88,90312651767802 -89.51515781767802 robot.pick and place(red fruit, top left corner)

SayCan - LLM Scoring Example - Ada

	Į
F b.	

query = "To pick all fruits and place it on their same colored bowls, I should:\h"
options = make_options(PICK_TARGETS, PLACE_TARGETS)
scores, response = gpt3_scoring(query, options, engine='text-ada-001', limit_num_options=24, option_start='\n', verbose=True)

Considering 24 options Scoring 24 options -97.85414741999999 -98.58011295159999 -100.52327231999999 -102.74691601999999 -103.0503400766 -103.2662361516 -104.23028945159999 -104.49452375159998 -104.60010391999998 -105.3210558996 -105.77874771999998

robot.pick_and_place(green fruit, middle)
robot.pick_and_place(yellow fruit, red bowl)
robot.pick_and_place(green fruit, red bowl)
robot.pick_and_place(green fruit, green bowl)
robot.pick_and_place(yellow fruit, yellow bowl)
robot.pick_and_place(yellow fruit, middle)
robot.pick_and_place(yellow fruit, bottom right corner)
robot.pick_and_place(green fruit, bottom right corner)
robot.pick_and_place(green fruit, yellow bowl)
robot.pick_and_place(green fruit, bottom right corner)
robot.pick_and_place(red fruit, green bowl)

SayCan - LLM Scoring Example - davinci

query = "To pick all fruits and place it on their same colored bowls, I should:\n" options = make_options(PICK_TARGETS, PLACE_TARGETS) scores, response = gpt3_scoring(guery, options, engine='text-davinci-002', limit_num_options=24, option_start='\n', verbose=True)

Considering 24 options Scoring 24 options -53.761287392353 -58.472346540852996 -60.404859791853 -65.187291882353 -65.534864932353 -69.70216333785301 -70.187875517853 -70.937570751853 -71.510847011853 -74.93217164205299 -75.99270968235301

robot.pick_and_place(red fruit, red bowl)
robot.pick_and_place(yellow fruit, yellow bowl)
robot.pick_and_place(green fruit, green bowl)
robot.pick_and_place(red fruit, green bowl)
robot.pick_and_place(green fruit, yellow bowl)
robot.pick_and_place(green fruit, red bowl)
robot.pick_and_place(yellow fruit, green bowl)
robot.pick_and_place(yellow fruit, red bowl)
robot.pick_and_place(red fruit, bottom left corner)
robot.pick_and_place(red fruit, top left corner)

Future Work and Improvements

- 1. Implement SayCan on new objects.
- 2. Train the CLIP/CLIPort models for accurate affordances
- 3. Look into RL based policy for learning in the environment.
- 4. Create an end to end working system utilising all the components (ViLD, CLIP, SayCan).

Conclusion

We extended the concepts of integrating LLMs with robotic actions in a simple tabletop environment. We have experimented on different object setups and different LLM configurations. The integration of the semantic knowledge and the real world ability of robots will be a useful tool in realizing smarter machines and systems both at home and in commercial applications.

References

- https://say-can.github.io/
- <u>https://cliport.github.io/</u>
- <u>https://arxiv.org/abs/2104.13921(Vild)</u>
- <u>https://www.ycbbenchmarks.com/</u>