

Reinforcement Learning for Vision-based Robot Grasping

Project 15

Outline

- Introduction
- Method
- Experiments
- Result & Analysis
- QA

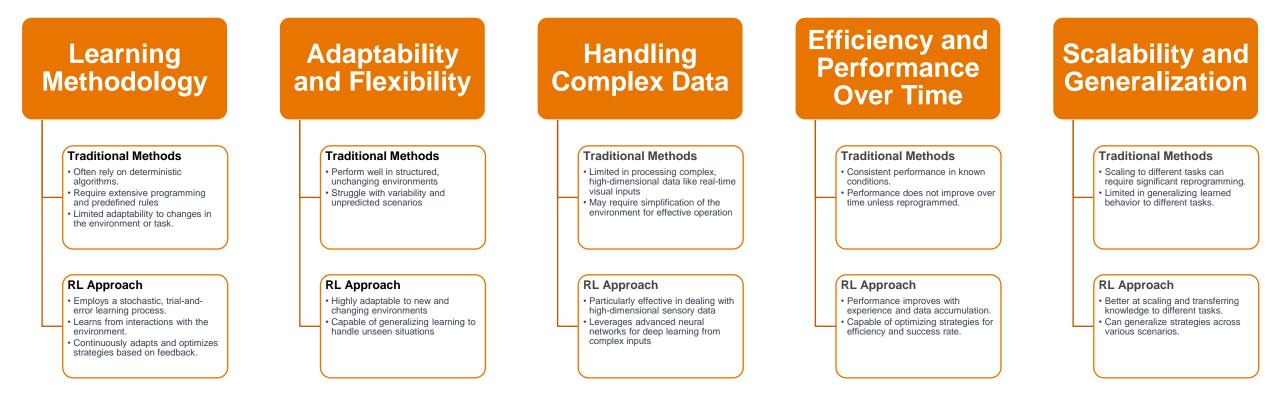
Introduction

RL in Vision-based Grasping

• Challenges in vision-based robot grasping.

- Complex Visual Environments
- Object Recognition and Localization
- Depth Perception
- Handling Unknown or Unseen Objects
- The advantage of RL over traditional methods
 - Adaptability to New Scenarios
 - Learning from Interaction
 - o Handling High-Dimensional Data
 - o Continuous Improvement
 - Decision-Making in Complex Environments

RL Approach vs. Traditional Methods in Robotic Grasping



Objectives of RL-based Grasping

- Enhancing Manipulation Skills: Enhancing Robotic Grasping with Reinforcement Learning. Enhanced complexity, adaptability, and success in grasping tasks.
- Learning and Adaptation: Enable robots to learn grasping techniques incrementally and apply them to unfamiliar objects and situations .
- Overcoming Programming Limitations: Shift from hardcoded instructions to a model where robots learn autonomously from their environment.

Method

We focus on exploring two of the prominent reinforcement learning algorithms: the **Deep Q-Network (DQN)** and the **Branch Dueling Q-Network (BDQ)**

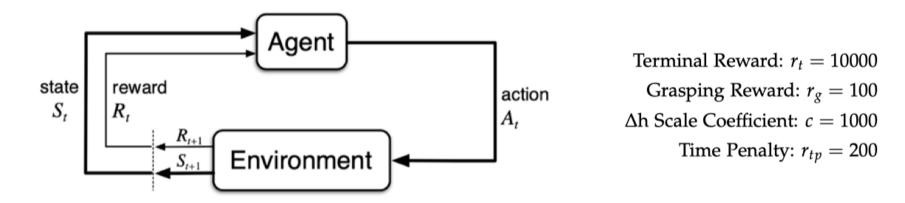
• **DQN**: Learn optimal policies directly from high-dimensional sensory inputs

• BDQ:

- Splits neural network into two: one estimating the state value, the other estimating the advantage of each action.
- Allows more nuanced decision-making
- Helps the robot to distinguish between the value of the state and the value of the actions available
- Crucial in grasping tasks: efficiency of actions can vary significantly based on the context.

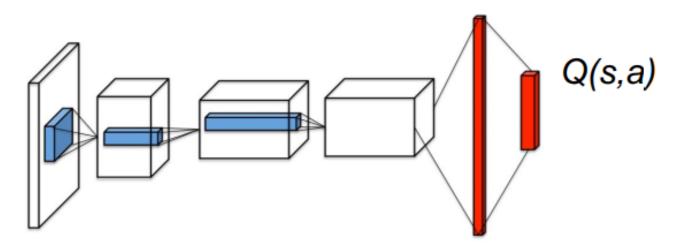
Method

We focus on exploring two of the prominent reinforcement learning algorithms: the **Deep Q-Network (DQN)** and the **Branch Dueling Q-Network (BDQ)**



- State: View of the environment from the eyes of the actor.
- **Reward**: $r = (\text{grasp detected}) \cdot (r_g + c \cdot \Delta h) r_{tp}$
- Action: the agent acts on the environment at time t, and the environment returns the reward and state of the action at time t + 1.

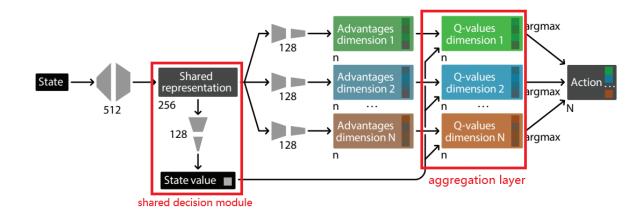
Method: Deep Q-Network (DQN) in Robotic Grasping



- **Basics of DQN**: A reinforcement learning algorithm that enables robots to make decisions based on environmental feedback.
- **Application in Grasping**: DQN helps robots analyze and learn from each interaction, progressively improving their ability to grasp and manipulate objects.

$$L(\theta) = E_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta^{-})) - Q(s,a;\theta) \right)^2 \right]$$

Method: Branch Dueling Q-Network (BDQ)



• **Problem:** Both tabular Q-learning and DQN have been shown to suffer from the overestimation of the action values

• BDQ: a branching variant of the Dueling Double Deep Q-Network (Dueling DDQN)

• Shared Decision Module: computes a latent representation, used for evaluation of the state value and the factorized (state-dependent) action advantages

•Aggregation Layer: Combine the state value and factorized advantages to output the Q-value

$$L = \mathop{\mathbb{E}}_{(s,a,r,s')\sim D} \left[\frac{1}{N} \sum_{d} (y_d - Q_d(s,a_d))^2 \right]$$

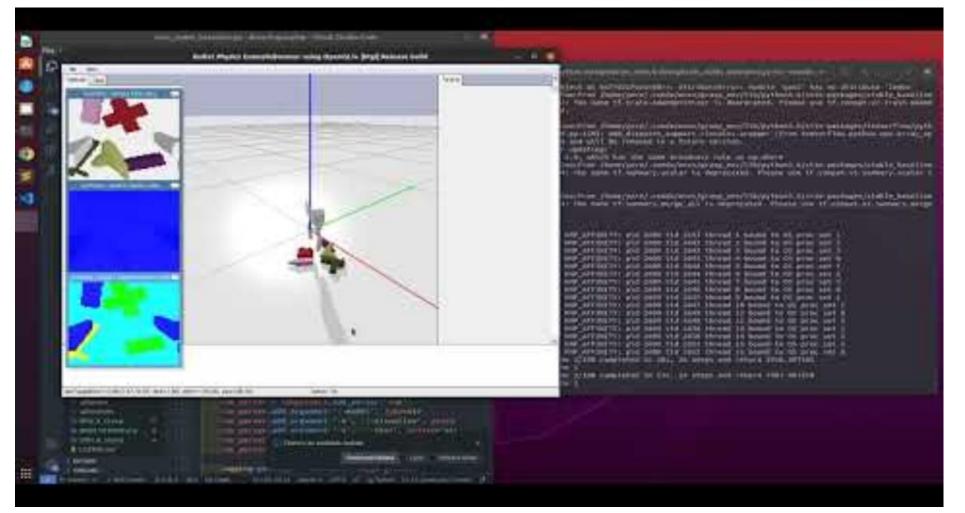
A. Tavakoli, F. Pardo, and P. Kormushev. "Action branching architectures for deep reinforcement learning". In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (2018), pp. 4131-4138. arXiv: 1711.08946.

Experiments

- Experimental setup
 - Dataset: pybullet-data
 - Robot Model: WSG50
 - Simulator: PyBullet
 - Framework: Gym
 - RL Library: stable-baselines
 - Evaluation Metrics: success-rate

Stable Baselines

Experiments

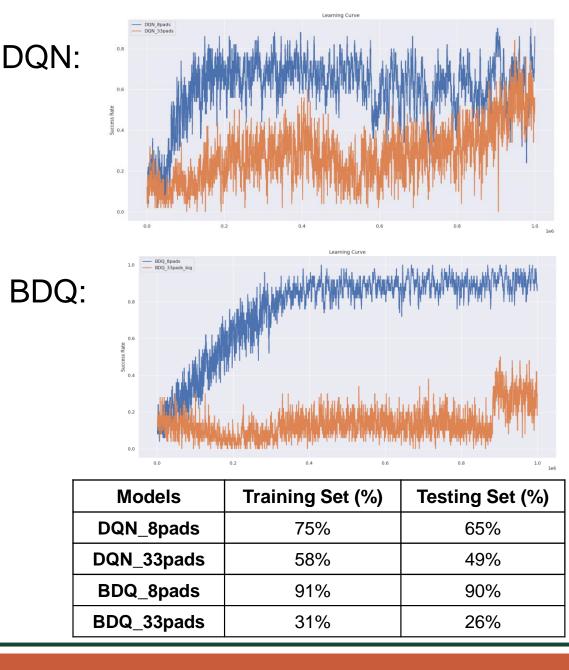


Results & Analysis

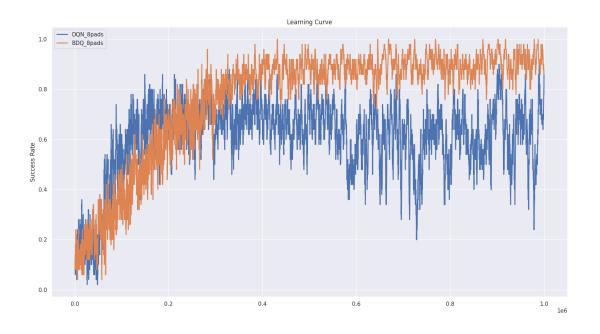
- **Goal:** how the neural network size affects the success rate
- **Method:** trained each model with varying action dimension padding 8 and 33
- Conclusion: model with smaller pads has a higher success rate on both training and testing set.

• Analysis:

- Exploration Challenges: If the action space is larger, the agent may face more difficulty in effective exploration during the learning process.
- Curse of Dimensionality: As the action space grows, the complexity of the problem may increase, making the learning process more challenging.



Results & Analysis



Models	Training Set (%)	Testing Set (%)
DQN_8pads	75%	65%
BDQ_8pads	91%	90%

DQN vs BDQ:

Compare the best models of DQN and BDQ

Conclusion:

- BDQ: higher success rate
- DQN: converge faster

Further improvement:

- Transfer to a different scene to test the robustness.
- Parameter tuning:
 - Increasing the number of training episodes, adjusting learning rates

Thank you!

Q&A