

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation

Professor Yu Xiang

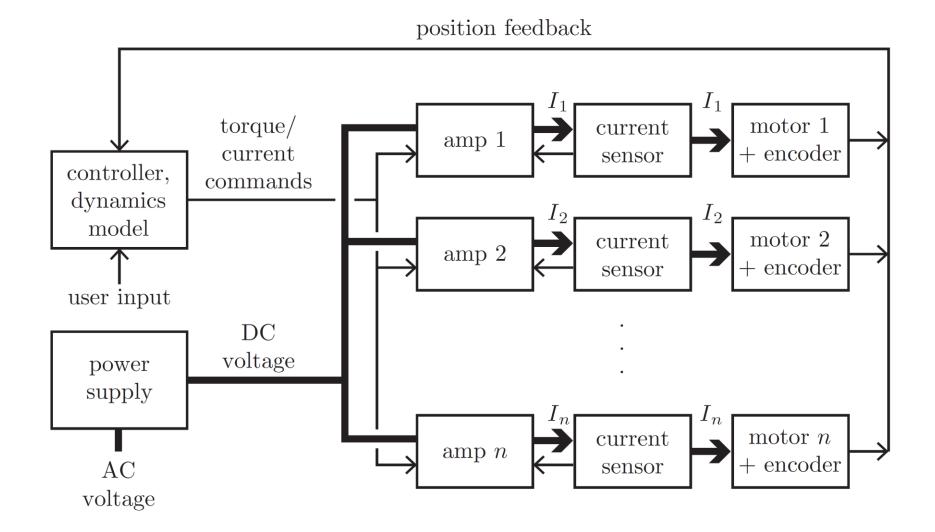
The University of Texas at Dallas

Robot Control

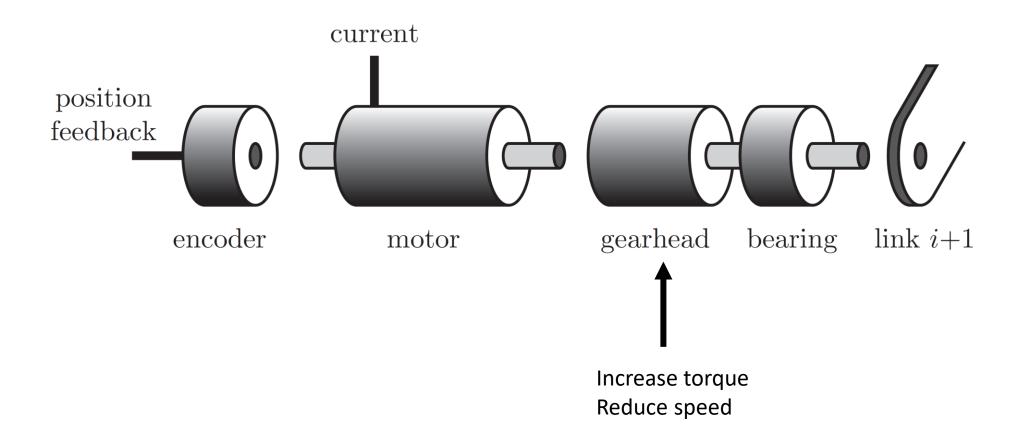
Convert task specifications to forces and torques at the actuators

- Types
 - Motion control
 - Force control
 - Hybrid motion-force control
 - Impedance control
- Feedback control
 - Use sensors for position, velocity and force
 - Compare with the desired behavior to compute the control signals

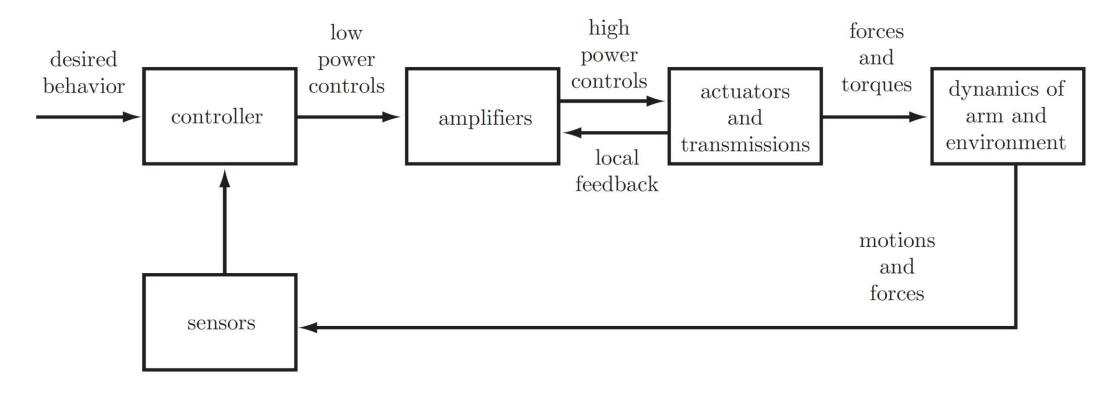
Actuation with DC Electric Motors



Actuation with DC Electric Motors



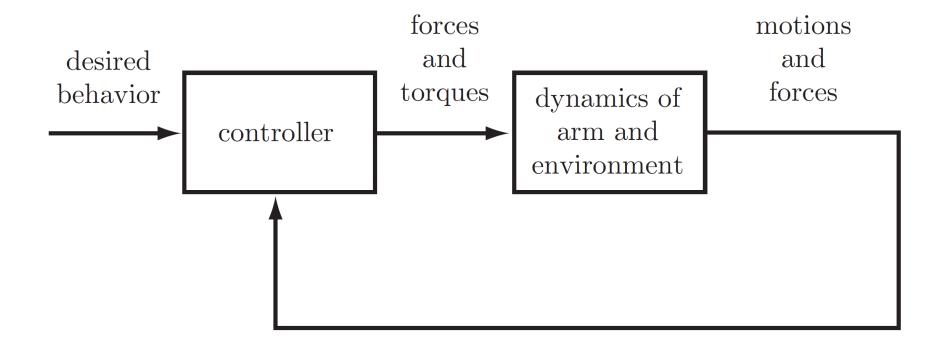
Control System Overview



- Potentiometers, encoders, or resolvers for joint position and angle sensing
- Tachometers for joint velocity sensing
- Joint force-torque sensors
- Multi-axis force-torque sensors at the "wrist" between the end of the arm and the end-effector

Control System Overview

A simplified system



Controlled Dynamics of a Single Joint

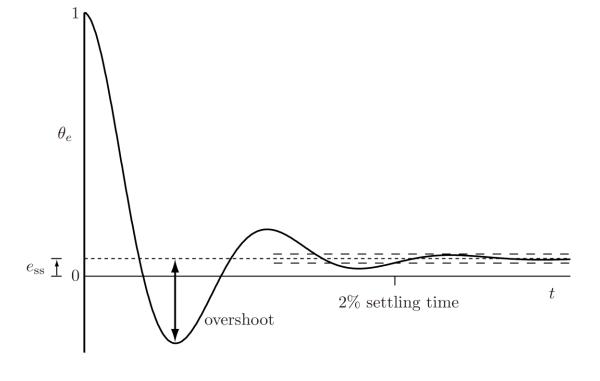
- Desired joint position $\theta_d(t)$
- The current joint position $\theta(t)$
- Joint error $\theta_e(t) = \theta_d(t) \theta(t)$
- Error dynamics: the differential equation governing the evolution of the joint error

• Feedback controller: create an error dynamics to make $\theta_e(t)$ become zero or a small value when t increases

Error Response

- How well a controller works?
 - Specify a nonzero initial error $\theta_e(0)$ and see how the controller reduces the error
- Error response $\theta_e(t), t>0$
 - Initial conditions $\theta_e(0) = 1$ $\dot{\theta}_e(0) = \ddot{\theta}_e(0) = \cdots = 0$

• Steady-state error $\theta_e(t)$ as $t \to \infty$

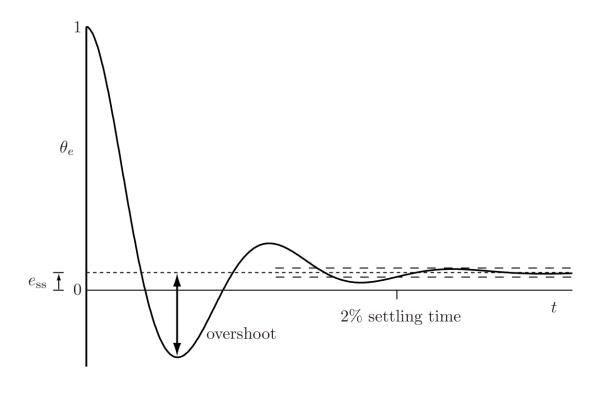


Error Response

• (2%) Settling time: first time T such that $|\theta_e(t)-e_{\rm ss}|\leq 0.02(\theta_e(0)-e_{\rm ss})$ for all $t\geq T$

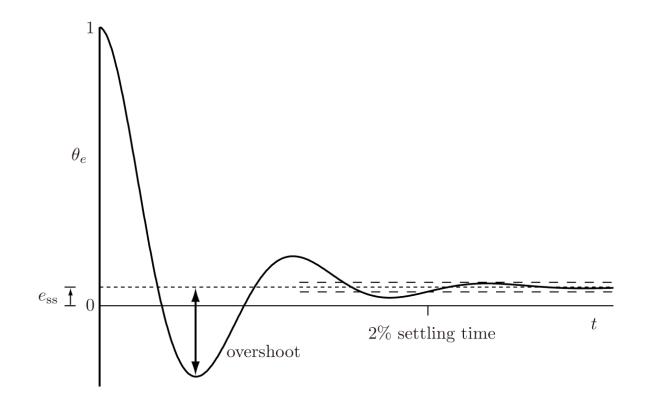
Overshoot

overshoot =
$$\left| \frac{\theta_{e,\text{min}} - e_{\text{ss}}}{\theta_{e}(0) - e_{\text{ss}}} \right| \times 100\%$$



Error Response

- A good error response
 - Little or no steady-state error
 - Little or no overshoot
 - A short 2% settling time



Motion Control with Velocity Inputs

 Typically, we assume direct control of the forces or torques at robot joints

- In some cases, we can assume that there is direct control of the joint velocities
 - The velocity of a joint is determined directly by the frequency of the pulse train sent to the stepper motor https://en.wikipedia.org/wiki/Stepper_motor

- Motion control with velocity inputs
 - Given a desired trajectory of a robot in joint space or in task space

$$\theta_d(t)$$

$$X_d(t)$$

Motion Control of a Single Joint

- Feedforward control or open-loop control
 - Given a desired joint trajectory $\theta_d(t)$
 - Choose the velocity command $\dot{\theta}(t) = \dot{\theta}_d(t)$
 - Cons: accumulating position errors
- Feedback control
 - Measure the joint position continuously for feedback

Motion Control of a Single Joint

Proportional controller or P controller

$$\dot{ heta}(t) = K_p(heta_d(t) - heta(t)) = K_p heta_e(t)$$
 Control gain $K_p > 0$

- When $heta_d(t)$ is a constant $\dot{ heta}_d(t)=0$ Setpoint control
 - Error dynamics

$$\dot{\theta}_e(t) = \dot{\theta}_d(t) - \dot{\theta}(t)$$

$$\dot{\theta}_e(t) = -K_p \theta_e(t) \rightarrow \dot{\theta}_e(t) + K_p \theta_e(t) = 0$$

First-Order Error Dynamics

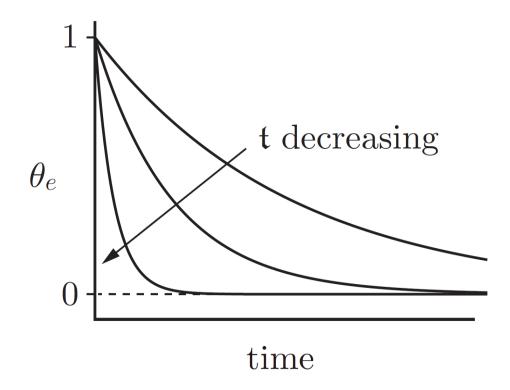
$$\dot{\theta}_e(t) + \frac{1}{\mathfrak{t}}\theta_e(t) = 0$$
 time constant \mathfrak{t}

Solution
$$\theta_e(t) = e^{-t/\mathfrak{t}}\theta_e(0)$$

Setpoint control

$$\dot{\theta}_e(t) + K_p \theta_e(t) = 0 \qquad \mathfrak{t} = 1/K_p$$

- 0 steady state error
- No overshoot
- 2% settling time $4/K_p$



$$\dot{\theta}(t) = K_p(\theta_d(t) - \theta(t)) = K_p\theta_e(t)$$

- When $\, heta_d(t) \, ext{is not constant but} \, \, \dot{ heta}_d(t) \, ext{is constant} \, \, \, \dot{ heta}_d(t) = c \,$
- Error dynamics

$$\dot{\theta}_e(t) = \dot{\theta}_d(t) - \dot{\theta}(t) = c - K_p \theta_e(t)$$

Solution

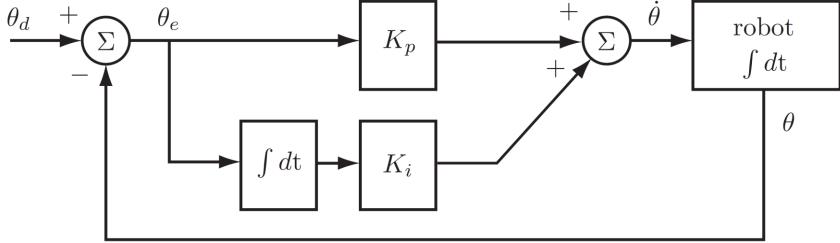
$$\theta_e(t) = \frac{c}{K_p} + \left(\theta_e(0) - \frac{c}{K_p}\right) e^{-K_p t} \longrightarrow c/K_p$$
 steady-state error

We cannot make K_p arbitrarily large (velocity limit, instability)

A proportional-integral controller

$$\dot{\theta}(t) = K_p \theta_e(t) + K_i \int_0^t \theta_e(t) \; dt$$
 Time-integral of the error

+ *i*



• Error dynamics for a constant $\dot{\theta}_d(t) = c$ $\dot{\theta}(t) = K_p \theta_e(t) + K_i \int_0^t \theta_e(t) dt$ $\dot{\theta}_e(t) = \dot{\theta}_d(t) - \dot{\theta}(t)$

$$\dot{\theta}(t) = K_p \theta_e(t) + K_i \int_0^t \theta_e(t) dt$$

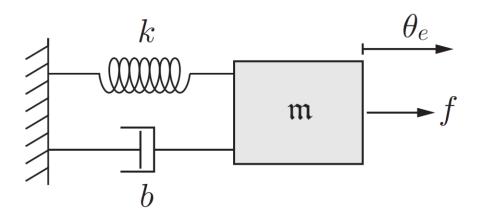
$$\dot{\theta}_e(t) + K_p \theta_e(t) + K_i \int_0^t \theta_e(t) dt = c$$

$$\ddot{\theta}_e(t) + K_p \dot{\theta}_e(t) + K_i \theta_e(t) = 0$$

Second-Order Error Dynamics

Mass-spring-damper

$$\mathfrak{m}\ddot{\theta}_e + b\dot{\theta}_e + k\theta_e = f$$



$$f = 0 \quad \ddot{\theta}_e(t) + \frac{b}{\mathfrak{m}}\dot{\theta}_e(t) + \frac{k}{\mathfrak{m}}\theta_e(t) = 0$$

$$\ddot{\theta}_e(t) + K_p \dot{\theta}_e(t) + K_i \theta_e(t) = 0$$

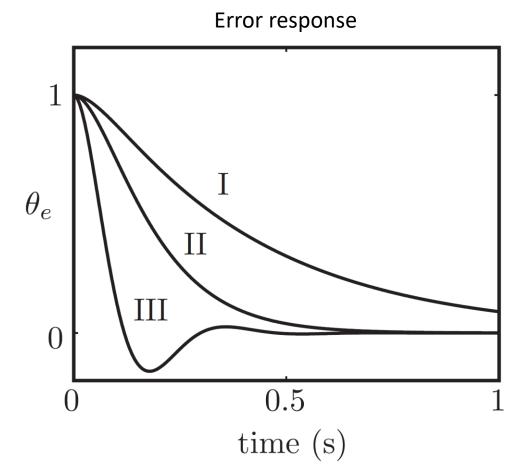
Standard second-order form $\ddot{\theta}_e(t) + 2\zeta\omega_n\dot{\theta}_e(t) + \omega_n^2\theta_e(t) = 0$

natural frequency ω_n

damping ratio ζ

$$\omega_n = \sqrt{K_i}$$

$$\omega_n = \sqrt{K_i}$$
 $\zeta = K_p/(2\sqrt{K_i})$



$$K_p = 20 \qquad \zeta = K_p/(2\sqrt{K_i})$$

- Overdamped $\zeta = 1.5, K_i = 44.4, \mathrm{case\ I}$
- Critically damped $\zeta=1,~K_i=100,~{\rm case~II}$
- Underdamped $\zeta = 0.5, K_i = 400, \mathrm{case\ III}$

Which one is the best?

Summary

- Robot control
 - Error dynamics
- Motion control
 - P controller
 - PI controller

Further Reading

• Chapter 11 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.