Dynamics of a Single Rigid Body and Statics

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

Robot Dynamics

- Study motion of robots with the forces and torques that cause them
- Newton's second law F = ma
- Forward dynamics
- Given robot state $(\theta, \dot{\theta})$ and the joinṭ forces and torques τ
- Determine the robot's acceleration $\ddot{\theta}$
- Inverse dynamics
- Given robot state $(\theta, \dot{\theta})$ and a desired acceleration $\ddot{\theta}$ (from motion planning)
- Find the joint forces and torques \mathcal{T}

Dynamics of a Single Rigid Body

- Assume the body is moving with a body twist $\mathcal{V}_{b}=\left(\omega_{b}, v_{b}\right)$
- $p_{i}(t)$ be the time-varying position of \mathfrak{m}_{i}, initially at r_{i}

$$
\begin{aligned}
\dot{p}_{i} & =v_{b}+\omega_{b} \times p_{i} \\
\ddot{p}_{i} & =\dot{v}_{b}+\frac{d}{d t} \omega_{b} \times p_{i}+\omega_{b} \times \frac{d}{d t} p_{i} \\
& =\dot{v}_{b}+\dot{\omega}_{b} \times p_{i}+\omega_{b} \times\left(v_{b}+\omega_{b} \times p_{i}\right) \\
\ddot{p}_{i} & =\dot{v}_{b}+\left[\dot{\omega}_{b}\right] r_{i}+\left[\omega_{b}\right] v_{b}+\left[\omega_{b}\right]^{2} r_{i}
\end{aligned}
$$

Dynamics of a Single Rigid Body

- Linear dynamics

$$
f_{b}=\mathfrak{m}\left(\dot{v}_{b}+\left[\omega_{b}\right] v_{b}\right)
$$

- Rotational dynamics

$$
m_{b}=\mathcal{I}_{b} \dot{\omega}_{b}+\left[\omega_{b}\right] \mathcal{I}_{b} \omega_{b} \quad \mathcal{I}_{b}=-\sum_{i} \mathfrak{m}_{i}\left[r_{i}\right]^{2} \in \mathbb{R}^{3 \times 3}
$$

Body's rotational inertia matrix

- Rotational kinetic energy

$$
\mathcal{K}=\frac{1}{2} \omega_{b}^{\mathrm{T}} \mathcal{I}_{b} \omega_{b}
$$

Twist-Wrench Formulation

- Linear dynamics $f_{b}=\mathfrak{m}\left(\dot{v}_{b}+\left[\omega_{b}\right] v_{b}\right)$
- Rotation dynamics $m_{b}=\mathcal{I}_{b} \dot{\omega}_{b}+\left[\omega_{b}\right] \mathcal{I}_{b} \omega_{b}$

$$
\left[\begin{array}{c}
m_{b} \\
f_{b}
\end{array}\right]=\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\dot{\omega}_{b} \\
\dot{v}_{b}
\end{array}\right]+\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & 0 \\
0 & {\left[\omega_{b}\right]}
\end{array}\right]\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]
$$

Twist-Wrench Formulation

$\left[\begin{array}{c}m_{b} \\ f_{b}\end{array}\right]=\left[\begin{array}{cc}\mathcal{I}_{b} & 0 \\ 0 & \mathfrak{m} I\end{array}\right]\left[\begin{array}{c}\dot{\omega}_{b} \\ \dot{v}_{b}\end{array}\right]+\left[\begin{array}{cc}{\left[\omega_{b}\right]} & 0 \\ 0 & {\left[\omega_{b}\right]}\end{array}\right]\left[\begin{array}{cc}\mathcal{I}_{b} & 0 \\ 0 & \mathfrak{m} I\end{array}\right]\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]$
Body wrench $\quad \mathcal{F}_{b}=\left[\begin{array}{c}m_{b} \\ f_{b}\end{array}\right] \quad$ Body twist $\quad \mathcal{V}_{b}=\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]$
Spatial inertia matrix $\quad \mathcal{G}_{b} \in \mathbb{R}^{6 \times 6} \quad \mathcal{G}_{b}=\left[\begin{array}{cc}\mathcal{I}_{b} & 0 \\ 0 & \mathfrak{m} I\end{array}\right]$

Spatial momentum $\mathcal{P}_{b} \in \mathbb{R}^{6} \mathcal{P}_{b}=\left[\begin{array}{c}\mathcal{I}_{b} \omega_{b} \\ \mathfrak{m} v_{b}\end{array}\right]=\left[\begin{array}{cc}\mathcal{I}_{b} & 0 \\ 0 & \mathfrak{m} I\end{array}\right]\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]=\mathcal{G}_{b} \mathcal{V}_{b}$

Twist-Wrench Formulation

$$
\begin{aligned}
& {\left[\begin{array}{c}
m_{b} \\
f_{b}
\end{array}\right]=\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\dot{\omega}_{b} \\
\dot{v}_{b}
\end{array}\right]+\left[\begin{array}{cc}
\left.\omega_{b}\right] & 0 \\
0 & {\left[\omega_{b}\right]}
\end{array}\right]\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{l}
\omega_{b} \\
v_{b}
\end{array}\right] } \\
& {\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & 0 \\
0 & {\left[\omega_{b}\right]}
\end{array}\right]\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & {\left[v_{b}\right]} \\
0 & {\left[\omega_{b}\right]}
\end{array}\right]\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right] \quad[v] v=v \times v=0 \text { and }[v]^{\mathrm{T}}=-[v] } \\
= & {\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & 0 \\
{\left[v_{b}\right]} & {\left[\omega_{b}\right]}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right] }
\end{aligned}
$$

Twist-Wrench Formulation

- Lie bracket of two twists $\mathcal{V}_{1}=\left(\omega_{1}, v_{1}\right)$ and $\mathcal{V}_{2}=\left(\omega_{2}, v_{2}\right)$

$$
\begin{gathered}
{\left[\begin{array}{cc}
{\left[\omega_{1}\right]} & 0 \\
{\left[v_{1}\right]} & {\left[\omega_{1}\right]}
\end{array}\right]\left[\begin{array}{c}
\omega_{2} \\
v_{2}
\end{array}\right]=\left[\operatorname{ad}_{\mathcal{V}_{1}}\right] \mathcal{V}_{2}=\operatorname{ad}_{\mathcal{V}_{1}}\left(\mathcal{V}_{2}\right) \in \mathbb{R}^{6}} \\
{\left[\operatorname{ad}_{\mathcal{V}}\right]=\left[\begin{array}{cc}
{[\omega]} & 0 \\
{[v]} & {[\omega]}
\end{array}\right] \in \mathbb{R}^{6 \times 6}} \\
\operatorname{ad}_{\mathcal{V}_{1}}\left(\mathcal{V}_{2}\right)=-\operatorname{ad}_{\mathcal{V}_{2}}\left(\mathcal{V}_{1}\right)
\end{gathered}
$$

Twist-Wrench Formulation

- Dynamic equations for a single rigid body

$$
\begin{aligned}
\mathcal{F}_{b} & =\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\operatorname{ad}_{\mathcal{V}_{b}}^{\mathrm{T}}\left(\mathcal{P}_{b}\right) \\
& =\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\left[\operatorname{ad}_{\mathcal{V}_{b}}\right]^{\mathrm{T}} \mathcal{G}_{b} \mathcal{V}_{b}
\end{aligned}
$$

- Moment equation for a rigid body

$$
m_{b}=\mathcal{I}_{b} \dot{\omega}_{b}-\left[\omega_{b}\right]^{\mathrm{T}} \mathcal{I}_{b} \omega_{b}
$$

Dynamics of a Single Rigid Body in Other Frames

- Kinetic energy $=\frac{1}{2} \omega_{b}^{\mathrm{T}} \mathcal{I}_{b} \omega_{b}+\frac{1}{2} \mathfrak{m} v_{b}^{\mathrm{T}} v_{b}=\frac{1}{2} \mathcal{V}_{b}^{\mathrm{T}} \mathcal{G}_{b} \mathcal{V}_{b}$
- The kinetic energy is independent of frames

$$
\begin{aligned}
\frac{1}{2} \mathcal{V}_{a}^{\mathrm{T}} \mathcal{G}_{a} \mathcal{V}_{a} & =\frac{1}{2} \mathcal{V}_{b}^{\mathrm{T}} \mathcal{G}_{b} \mathcal{V}_{b} \\
& =\frac{1}{2}\left(\left[\operatorname{Ad}_{T_{b a}}\right] \mathcal{V}_{a}\right)^{\mathrm{T}} \mathcal{G}_{b}\left[\operatorname{Ad}_{T_{b a}}\right] \mathcal{V}_{a} \quad\left[\operatorname{Ad}_{T}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right] \in \mathbb{R}^{6 \times 6} \\
& =\frac{1}{2} \mathcal{V}_{a}^{\mathrm{T}} \underbrace{\left[\operatorname{Ad}_{T_{b a}}\right]^{\mathrm{T}} \mathcal{G}_{b}\left[\operatorname{Ad}_{\left.T_{b a}\right]}\right]}_{\mathcal{G}_{a}} \mathcal{V}_{a} ;
\end{aligned}
$$

Dynamics of a Single Rigid Body in Other Frames

- The spatial inertia matrix

$$
\mathcal{G}_{a}=\left[\operatorname{Ad}_{T_{b a}}\right]^{\mathrm{T}} \mathcal{G}_{b}\left[\operatorname{Ad}_{T_{b a}}\right]
$$

- Equations of motion in frame \{a\}

$$
\mathcal{F}_{a}=\mathcal{G}_{a} \dot{\mathcal{V}}_{a}-\left[\operatorname{ad}_{\mathcal{V}_{a}}\right]^{\mathrm{T}} \mathcal{G}_{a} \mathcal{V}_{a}
$$

Dynamics of a Single Rigid Body

- Inverse dynamics

$$
\mathcal{F}_{b}=\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\left[\operatorname{ad}_{\nu_{b}}\right]^{\mathrm{T}} \mathcal{G}_{b} \mathcal{V}_{b}
$$

- Forward dynamics

$$
\dot{\mathcal{V}}_{b}=\mathcal{G}_{b}^{-1}\left(\mathcal{F}_{b}+\left[\operatorname{ad}_{\mathcal{V}_{b}}\right]^{\mathrm{T}} \mathcal{G}_{b} \mathcal{V}_{b}\right)
$$

Spatial Force or Wrench

- Merge moment and force in frame \{a\}

$$
\text { Wrench } \quad \mathcal{F}_{a}=\left[\begin{array}{c}
m_{a} \\
f_{a}
\end{array}\right] \in \mathbb{R}^{6}
$$

- If more than one wrenches act on a rigid body, the total wrench is the vector sum of the wrenches
- Power $=$ force \times velocity $\quad P=F v$

Wrench in Different Frames

- Power generated by (F, V) are the same

$$
\begin{gathered}
\mathcal{V}_{b}^{\mathrm{T}} \mathcal{F}_{b}=\mathcal{V}_{a}^{\mathrm{T}} \mathcal{F}_{a} \\
\mathcal{V}_{a}=\left[\operatorname{Ad}_{T_{a b}}\right]_{b} \\
\mathcal{V}_{b}^{\mathrm{T}} \mathcal{F}_{b}=\left(\left[\operatorname{Ad}_{T_{a b}}\right)_{b}\right)^{\mathrm{T}} \mathcal{F}_{a} \\
=\mathcal{V}_{b}^{\mathrm{T}}\left[\operatorname{Ad}_{\left.T_{a b}\right]}{ }^{\mathrm{T}} \mathcal{F}_{a} .\right. \\
\mathcal{F}_{b}=\left[\operatorname{Ad}_{\left.T_{a b}\right]} \mathcal{F}_{a}\right. \\
\mathcal{F}_{a}=\left[\operatorname{Ad}_{T_{b a}}\right]^{\mathrm{T}} \mathcal{F}_{b}
\end{gathered}
$$

Wrench Example

A robot hand holding an apple subject to gravity

- Apple mass 0.1 kg
- Gravity g=10 m/s ${ }^{2}$
- Mass of hand 0.5 kg

What is the force and torque measured by the six-axis force-torque sensor between the hand and the robot arm?

- Frame $\{\mathrm{f}\}$ at the sensor
- Frame $\{\mathrm{h}\}$ at the center of mass of hand
- Frame \{a\} at the center of mass of apple
- Gravitational wrench on hand in $\{\mathrm{h}\}$

$$
\mathcal{F}_{h}=(0,0,0,0,-5 \mathrm{~N}, 0)
$$

- Gravitational wrench on apple in $\{a\}$

$$
\mathcal{F}_{a}=(0,0,0,0,0,1 \mathrm{~N})
$$

Wrench Example

$$
\begin{aligned}
& \text { A robot hand holding an apple subject to gravity } \\
& T_{h f}=\left[\begin{array}{cccc}
1 & 0 & 0 & -0.1 \mathrm{~m} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad T_{a f}=\left[\begin{array}{cccc}
1 & 0 & 0 & -0.25 \mathrm{~m} \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathcal{F}_{f}=\left[\operatorname{Ad}_{T_{h f}}\right]^{\mathrm{T}} \mathcal{F}_{h}+\left[\operatorname{Ad}_{T_{a f}}\right]^{\mathrm{T}} \mathcal{F}_{a} \\
& =\left[\begin{array}{lll}
0 & 0 & -0.5 \mathrm{Nm} 0-5 \mathrm{~N} 0
\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{lll}
0 & 0-0.25 \mathrm{Nm} 0-1 \mathrm{~N} 0
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{lll}
0 & 0 & -0.75 \mathrm{Nm} 0-6 \mathrm{~N} 0
\end{array}\right]^{\mathrm{T}} \text {. }
\end{aligned}
$$

Statics of Open Chains

- Principle of conservation of power power at the joints $=($ power to move the robot $)+($ power at the end-effector $)$
- Considering the robot to be at static equilibrium (no power to move robot)

$$
\begin{aligned}
& \tau^{\mathrm{T}} \dot{\theta}=\mathcal{F}_{b}^{\mathrm{T}} \mathcal{V}_{b} \quad \text { power at the end-effector } \\
& \mathcal{V}_{b}=J_{b}(\theta) \dot{\theta} \\
& \tau=J_{b}^{\mathrm{T}}(\theta) \mathcal{F}_{b}
\end{aligned}
$$

Statics of Open Chains

- If an external wrench $-\mathcal{F}$ is applied to the end-effector when the robot is at equilibrium, joint torque to keep the robot at equilibrium

$$
\tau=J^{\mathrm{T}}(\theta) \mathcal{F}
$$

- Important for force control

Summary

- Dynamics of a single rigid body
- Wrench in different frames
- Statics of open chains

Further Reading

- Sections 3.4, 4.3 and Chapter 8 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.

