CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

NIN

Robot Dynamics

- Study motion of robots with the forces and torques that cause them
 - Newton's second law F = ma
- Forward dynamics
 - Given robot state (heta, heta) and the joint forces and torques \mathcal{T}

Simulation

- Determine the robot's acceleration heta

- Inverse dynamics
 - Given robot state (heta, heta) and a desired acceleration $\ddot{ heta}$ (from motion planning)
 - Find the joint forces and torques au

Control

10/25/	/2023
--------	-------

Grid Methods with Motion Constraints

Algorithm 10.2 Grid-based Dijkstra planner for a wheeled mobile robot.

1.	$OPEN \leftarrow \{a_{n+1}, \dots, k\}$		
1. 9.	past cost $[a,] \leftarrow 0$		
2. 2	$past_cost[q_{start}] \leftarrow 0$		
3:	counter $\leftarrow 1$		
4:	while OPEN is not empty and counter < MAXCOUNT do		
5:	$\texttt{current} \leftarrow \text{first node in OPEN}, \text{ remove from OPEN}$		
6:	if current is in the goal set then		
7:	return SUCCESS and the path to current		
8:	end if		
9:	if current is not in a previously occupied C-space grid cell then		
10:	mark grid cell occupied		
11:	$counter \leftarrow counter + 1$		
12:	for each control in the discrete control set do		
13:	integrate control forward a short time Δt from current to q_{new}		
14:	if the path to q_{new} is collision-free then		
15:	compute cost of the path to q_{new}		
16:	place q_{new} in OPEN, sorted by cost		
17:	$\texttt{parent}[q_{\text{new}}] \leftarrow \texttt{current}$		
18:	end if		
19:	end for		
20:	20: end if		
21:	21: end while		
22:	return FAILURE		

Reversals are penalized

10/25/2023

Point
$$r_a \in \mathbb{R}^3$$

Force $f_a \in \mathbb{R}^3$

Torque or Moment

 $m_a \in \mathbb{R}^3$

$$m_a = r_a \times f_a$$

Spatial Force or Wrench

• Merge moment and force in frame {a}

Wrench
$$\mathcal{F}_a = \left[\begin{array}{c} m_a \\ f_a \end{array} \right] \in \mathbb{R}^6$$

- If more than one wrenches act on a rigid body, the total wrench is the vector sum of the wrenches
- Pure moment: a wrench with a zero linear component

- A rigid body with a set of point masses
- Total mass $\mathfrak{m} = \sum_i \mathfrak{m}_i$
- The origin of the body frame

Center of mass
$$\sum_{i} \mathfrak{m}_{i} r_{i} = 0$$

• If some other point is chosen as origin, move the origin to $(1/\mathfrak{m})\sum_i\mathfrak{m}_i r_i$

- Assume the body is moving with a body twist $|\mathcal{V}_b| = (\omega_b, v_b)$
- $p_i(t)$ be the time-varying position of \mathfrak{m}_i , initially at $|r_i|$

• For a point mass $f_i = \mathfrak{m}_i \ddot{p}_i$

$$f_i = \mathfrak{m}_i (\dot{v}_b + [\dot{\omega}_b]r_i + [\omega_b]v_b + [\omega_b]^2 r_i)$$

- Moment of the point mass $m_i = [r_i]f_i$
- Total force and moment on the body

Wrench
$$\mathcal{F}_b = \begin{bmatrix} m_b \\ f_b \end{bmatrix} = \begin{bmatrix} \sum_i m_i \\ \sum_i f_i \end{bmatrix}$$

• Linear dynamics

Linear dynamics

$$f_{b} = \sum_{i} \mathfrak{m}_{i}(\dot{v}_{b} + [\dot{\omega}_{b}]r_{i} + [\omega_{b}]v_{b} + [\omega_{b}]^{2}r_{i})$$

$$[x] = \begin{bmatrix} 0 & -x_{3} & x_{2} \\ x_{3} & 0 & -x_{1} \\ -x_{2} & x_{1} & 0 \end{bmatrix}$$

$$= \sum_{i} \mathfrak{m}_{i}(\dot{v}_{b} + [\omega_{b}]v_{b}) - \sum_{i} \mathfrak{m}_{i}[r_{i}]\dot{\omega}_{b} + \sum_{i} \mathfrak{m}_{i}[r_{i}][\omega_{b}]\omega_{b} \overset{0}{\longrightarrow} 0$$

$$= \sum_{i} \mathfrak{m}_{i}(\dot{v}_{b} + [\omega_{b}]v_{b})$$

$$= \mathfrak{m}(\dot{v}_{b} + [\omega_{b}]v_{b}).$$

• Rotational dynamics

$$\begin{split} m_b &= \sum_i \mathfrak{m}_i [r_i] (\dot{v}_b + [\dot{\omega}_b] r_i + [\omega_b] v_b + [\omega_b]^2 r_i \\ &= \underbrace{\sum_i \mathfrak{m}_i [r_i] \dot{v}_b}_{i} + \underbrace{\sum_i \mathfrak{m}_i [r_i] [\omega_b] v_b}_{i} \overset{0}{0} \\ &+ \sum_i \mathfrak{m}_i [r_i] ([\dot{\omega}_b] r_i + [\omega_b]^2 r_i) \\ &= \sum_i \mathfrak{m}_i (-[r_i]^2 \dot{\omega}_b - [r_i] [\omega_b] [r_i] \omega_b) \\ &= \sum_i \mathfrak{m}_i (-[r_i]^2 \dot{\omega}_b - [\omega_b] [r_i]^2 \omega_b) \\ &= \int_i \mathfrak{m}_i [r_i]^2 \right) \dot{\omega}_b + [\omega_b] \left(-\sum_i \mathfrak{m}_i [r_i]^2 \right) \omega_b \\ &= \mathcal{I}_b \dot{\omega}_b + [\omega_b] \mathcal{I}_b \omega_b, \end{split}$$

 $[a] = -[a]^{T}$ [a]b = -[b]a $[a][b] = ([b][a])^{T}$

Fact
$$[r_i \times \omega_b] = [r_i][\omega_b] - [\omega_b][r_i]$$

Body's rotational inertia matrix

$$\mathcal{I}_b = -\sum_i \mathfrak{m}_i [r_i]^2 \in \mathbb{R}^{3 \times 3}$$

symmetric and positive definite

Euler's equation for a rotating rigid body

• Linear dynamics

Body twist $\mathcal{V}_b = (\omega_b, v_b)$

$$f_b = \mathfrak{m}(\dot{v}_b + [\omega_b]v_b)$$

• Rotational dynamics

$$m_b = \mathcal{I}_b \dot{\omega}_b + [\omega_b] \mathcal{I}_b \omega_b$$

Rotational kinetic energy

$$\mathcal{K} = \frac{1}{2} \omega_b^{\mathrm{T}} \mathcal{I}_b \omega_b$$

• Rotational inertia matrix $\mathcal{I}_b = -\sum_i \mathfrak{m}_i [r_i]^2 \in \mathbb{R}^{3 imes 3}$

- Principal axes of inertia: eigenvectors of \mathcal{I}_b
 - Directions given by eigenvectors
 - Eigenvalues are principal moments of inertia

• General rotation dynamics

$$m_b = \mathcal{I}_b \dot{\omega}_b + [\omega_b] \mathcal{I}_b \omega_b$$

• If the principal axes are aligned with the axes of {b}, \mathcal{I}_b is a diagonal matrix

rotational dynamics
$$m_b = \begin{bmatrix} \mathcal{I}_{xx}\dot{\omega}_x + (\mathcal{I}_{zz} - \mathcal{I}_{yy})\omega_y\omega_z \\ \mathcal{I}_{yy}\dot{\omega}_y + (\mathcal{I}_{xx} - \mathcal{I}_{zz})\omega_x\omega_z \\ \mathcal{I}_{zz}\dot{\omega}_z + (\mathcal{I}_{yy} - \mathcal{I}_{xx})\omega_x\omega_y \end{bmatrix} \omega_b = (\omega_x, \omega_y, \omega_z)$$

$$\mathcal{I}_{xx} = \int_{\mathcal{B}} (y^2 + z^2) \rho(x, y, z) \, dV$$
$$\mathcal{I}_{yy} = \int_{\mathcal{B}} (x^2 + z^2) \rho(x, y, z) \, dV$$
$$\mathcal{I}_{zz} = \int_{\mathcal{B}} (x^2 + y^2) \rho(x, y, z) \, dV$$

rectangular parallelepiped: volume = abc, $\mathcal{I}_{xx} = \mathfrak{m}(w^2 + h^2)/12$, $\mathcal{I}_{yy} = \mathfrak{m}(\ell^2 + h^2)/12$, $\mathcal{I}_{zz} = \mathfrak{m}(\ell^2 + w^2)/12$ circular cylinder: volume = $\pi r^2 h$, $\mathcal{I}_{xx} = \mathfrak{m}(3r^2 + h^2)/12$, $\mathcal{I}_{yy} = \mathfrak{m}(3r^2 + h^2)/12$, $\mathcal{I}_{zz} = \mathfrak{m}r^2/2$ ellipsoid: volume = $4\pi abc/3$, $\mathcal{I}_{xx} = \mathfrak{m}(b^2 + c^2)/5$, $\mathcal{I}_{yy} = \mathfrak{m}(a^2 + c^2)/5$, $\mathcal{I}_{zz} = \mathfrak{m}(a^2 + b^2)/5$

 $\hat{\mathbf{x}}$

- Inertia matrix in a rotated frame {c}
- Kinetic energy is the same in different frame

$$\frac{1}{2}\omega_{c}^{\mathrm{T}}\mathcal{I}_{c}\omega_{c} = \frac{1}{2}\omega_{b}^{\mathrm{T}}\mathcal{I}_{b}\omega_{b}$$

$$= \frac{1}{2}(R_{bc}\omega_{c})^{\mathrm{T}}\mathcal{I}_{b}(R_{bc}\omega_{c})$$

$$= \frac{1}{2}\omega_{c}^{\mathrm{T}}(R_{bc}^{\mathrm{T}}\mathcal{I}_{b}R_{bc})\omega_{c}.$$

$$\mathcal{I}_c = R_{bc}^{\mathrm{T}} \mathcal{I}_b R_{bc}$$

Steiner's theorem

• The inertia matrix \mathcal{I}_q about a frame aligned with {b}, but at a point in {b} $q = (q_x, q_y, q_z)$, is related to the inertia matrix calculated at the center of mass by

$$\mathcal{I}_q = \mathcal{I}_b + \mathfrak{m}(q^{\mathrm{T}}qI - qq^{\mathrm{T}})$$

• Parallel-axis theorem: the scalar inertia \mathcal{I}_d about an axis parallel to, but a distance d from, an axis through the center of mass is

$$\mathcal{I}_d = \mathcal{I}_{\rm cm} + \mathfrak{m} d^2$$

• Change of reference frame

$$\mathcal{I}_c = R_{bc}^{\mathrm{T}} \mathcal{I}_b R_{bc}$$

$$\mathcal{I}_q = \mathcal{I}_b + \mathfrak{m}(q^{\mathrm{T}}qI - qq^{\mathrm{T}})$$

Further Reading

- Chapter 8 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.
- Dynamics of a Single Rigid Body. Prof. Wei Zhang, Southern University of Science and Technology, Shenzhen, China <u>https://www2.ece.ohio-</u> <u>state.edu/~zhang/RoboticsClass/docs/LN11 RigidBodyDynamics a.p</u> <u>df</u>