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Robot Dynamics

* Study motion of robots with the forces and torques that cause them
* Newton’s second law F = ma

* Forward dynamics
* Given robot state (0, 0) and the joint forces and torques 7~

) ) Simulation
e Determine the robot’s acceleration f

* Inverse dynamics
* Given robot state (9 9) and a desired acceleration (9 (from motion planning)
* Find the joint forces and torques T~

Control




Grid Methods with Motion Constra

Algorithm 10.2 Grid-based Dijkstra planner for a wheeled mobile robot.
1: OPEN < {Q'start}
2: past_cost [gstart] < 0
3: counter <+ 1
4: while OPEN is not empty and counter < MAXCOUNT do
5.  current < first node in OPEN, remove from OPEN
6: if current is in the goal set then
7 return SUCCESS and the path to current
8: end if
9:  if current is not in a previously occupied C-space grid cell then
10: mark grid cell occupied
11: counter < counter + 1
12: for each control in the discrete control set do
13: integrate control forward a short time At from current to guew
14: if the path to ¢uew is collision-free then
15: compute cost of the path to gnew
16: place gnew in OPEN, sorted by cost
17: parent [¢new] ¢ current
18: end if
19: end for
20: end if .
: Reversals are penalized
21: end while
22: return FAILURE




Torque

Point Ta E Rg
f Force fa E RS

Torque or Moment

m, € R3

Mg = Tq X f a
A rigid body




Spatial Force or Wrench

* Merge moment and force in frame {a}

Wrench Fa —

Mq

fa

c R°

* If more than one wrenches act on a rigid body, the total wrench is the

vector sum of the wrenches

* Pure moment: a wrench with a zero linear component




Dynamics of a Single Rigid Body

* A rigid body with a set of point masses

* Total mass m = ZZ m;
* The origin of the body frame

Center of mass g m;r; = 0

(2
* If some other point is chosen as origin,

move the originto (1 /m) > myT




Dynamics of a Single Rigid Body

 Assume the body is moving with a body twist V}p = (wb, vb)
e pi(t) be the time-varying position of m; , initially at 7;
Pi = Up + wp X P;
d d

D; = Up + —Wp X P; + wWp X —P;
Pi b At b Pi b dtpz

= Up + Wp X P; + wp X (vp + wp X p;)

Pi = Up + [cop]ri + [wp]vp + [wp]?rs




Dynamics of a Single Rigid Body

* For a point mass f; = m;p;
fi = m(0p + [Wp|ri + [wo]vp + [wp]?T;)

* Moment of the point mass  m; = |75 f;
* Total force and moment on the body

Wrench Jp = { T}Lbb } = { Ez::"”r;?’ ]




Dynamics of a Single Rigid Body

* Linear dynamics 0 —z5 a9
[.GC] = I3 0 —I
—I9 I 0

= Z m; (0 + [eop]rs + [wo]vp + [wy]?7s)

0
= 3 miliy + nfon) —W+ > midnffrtar

— Z m; (0p + [ws|vp)

>_imy[ri] =0

= m(0p + [wpvs).




Dynamics of a Single Rigid Body a] = —[a]”
* Rotational dynamics alb = —|bla
Zm (0 + [n]rs + [wplvp + [ws]*rs) a][b] = ([b] [a])T

/Z/merW Fact [’T‘i X wb] — [Tz] [wb] o [wb] [T'J

Body's rotational inertia matrix

— 2 3X3
Iy = — ) ;mri]” € R
B ( Zi:mz-[m- ) @+ ( Zm ) symmetric and positive definite

= Tpwp + [wp]Tpws,

= Y (i — lanllrfn)

Euler's equation for a rotating rigid body




Dynamics of a Single Rigid Body

* Linear dynamics Body twist V}, = (wp, vp)

fo = m(0p + [ws|vp)
* Rotational dynamics
my = Lywp + [wb]Ibwb

* Rotational kinetic energy

1
IC = §waIbLUb




Dynamics of a Single Rigid Body

° i i ' ' _ 2 3 X3
Rotational inertia matrix 7, = — Zz m; [’r‘Z] c R
i Zmz‘(y? + ZE) — > MyTy; — > Mz |
Iy = =Y mmy; yom(af +27) = Y myiz
— D MT; 2 —Yomuyiz o m(z +yp)
| I:U:c I:Ey I:cz |
— Loy ZLyy ZLy-
I:BZ Iyz Izz Ioe = f(92+22)P($aya z) dV Loy = —/Bmyp(a:,y, 2) dV
- - B
T,y = flg($2+z2)p(m’y,z) dV Ly, = —/Ba:zp(:v,y,z) av
I.. = flg(m2+y2)p($’y’z) dv Z,, = —/Byzp(a:,y,z) dvV.

mass density function p(ZE, Yy, Z)




Inertia Matrix

* Principal axes of inertia: eigenvectors of 7/
* Directions given by eigenvectors
* Eigenvalues are principal moments of inertia




Inertia Matrix

e General rotation dynamics

mp

= Tywyp + [wb]Ibwb

* If the principal axes are aligned with the axes of {b}, 7, is a diagonal

matrix

rotational dynamics 7Ty —

Ixazww + (Izz

— Ly )wyw;
T Izz)wa:wz

Toows + (Lyy — Log ) wawy

Wp = (wma Wy 4 wz)




Inertia Matrix

L R R
’ y

N\

rectangular parallelepiped:
volume = abc,
Tow = m(w? 4+ h?) /12,
T,y = m(Z + h?)/12,
T.. =m(l? +w?)/12

hICZT >

circular cylinder:
volume = mr2h,
Tow = m(3r2 + h?)/12,
T,y = m(3r? + h?)/12,
T,,=mr?/2

I, = f (v + 2)pla,y, 2) AV

’ B
Ty = fB(x2 + 2 p(x,y, 2) dV
IT.., = L(:ﬁ—l—y%p(m,y,z) dV
T Z
—=
y
ellipsoid:

volume = 4mabc/3,
Tow = m(b* + c*)/5,
Iy = m(a® +¢%)/5,
Z.. =m(a® +b%)/5




Inertia Matrix

* Inertia matrix in a rotated frame {c}

* Kinetic energy is the same in different frame

1 1
§wCTIcwc = §waIbwb

1
— 5 (Rbcwc)TIb(Rbcwc)

1
= 3 wr (R Ty Ry )we

T. = R; Ty Ry




Steiner’s theorem

* The inertia matrix Iq about a frame aligned with {b}, but at a point in
{b} ¢ = (gs,9y,q.),isrelated to the inertia matrix calculated at the
center of mass by

T, =Ty +m(q gl —qq")

* Parallel-axis theorem: the scalar inertia ZZ; about an axis parallel to,
but a distance d from, an axis through the center of mass is

T, = L., + md?




Inertia Matrix

* Change of reference frame

Ic — RbTCIb Rbc

T, =Ty +m(q gl —qq")




Further Reading

e Chapter 8 in Kevin M. Lynch and Frank C. Park. Modern Robotics:
Mechanics, Planning, and Control. 1st Edition, 2017.

* Dynamics of a Single Rigid Body. Prof. Wei Zhang, Southern University
of Science and Technology, Shenzhen, China https://www?2.ece.ohio-
state.edu/~zhang/RoboticsClass/docs/LN11 RigidBodyDynamics a.p

df
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