Forward Kinematics and Product of Exponentials Formula

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

Forward Kinematics

- Forward kinematics of a robot: calculation of the position and orientation of its end-effector from its joint coordinates θ
- Recall robot links and joints

Forward Kinematics

Forward kinematics of a 3R planar open chain.

- General cases
- Attaching frames to links
- Using homogeneous transformations
$T_{04}=T_{01} T_{12} T_{23} T_{34}$

$$
T_{01}=\left[\begin{array}{cccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] T_{12}=\left[\begin{array}{cccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 & L_{1} \\
\sin \theta_{2} & \cos \theta_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
T_{23}=\left[\begin{array}{cccc}
\cos \theta_{3} & -\sin \theta_{3} & 0 & L_{2} \\
\sin \theta_{3} & \cos \theta_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad T_{34}=\left[\begin{array}{cccc}
1 & 0 & 0 & L_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$T_{i-1, i}$ Depends only on the joint variable θ_{i}

Forward Kinematics

- Method 1: uses homogeneous transformations
- Need to define the coordinates of frames
- Denavit-Hartenberg Parameters
- Method 2: uses screw-axis representations of transformations
- No need to define frame references

Screw-Axis Representations

- Screw axis: motion of a screw

- Chasles-Mozzi theorem: every rigid-body displacement can be expressed as displacement along a fixed screw axis S in space

Exponential Coordinates of Rigid-Body Motions
Velocity of a 3D point

$$
\begin{aligned}
& \dot{p}=v+\omega \times p \\
& \tilde{p}=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \tilde{p} \\
& {[\mathcal{V}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \operatorname{se}(3)} \\
& \tilde{p}(t)=e^{[\mathcal{V}] t} \tilde{p}(0)
\end{aligned}
$$

Exponential Coordinates of Rigid-Body Motions

- Exponential coordinates of a homogeneous transformation T

$$
\begin{array}{ll}
\exp : & {[\mathcal{S}] \theta \in \operatorname{se}(3) \quad \rightarrow \quad T \in S E(3)} \\
\log : & T \in S E(3) \quad \rightarrow \quad[\mathcal{S}] \theta \in \operatorname{se}(3)
\end{array}
$$

$$
\text { Screw axis } \quad[\mathcal{S}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \operatorname{se}(3)
$$

Forward Kinematics

- A different approach

- Define M to the position and orientation of frame $\{4\}$ when all the joint angles are zeros ("home" or "zero" position of the robot)

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & L_{1}+L_{2}+L_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Consider each revolute joint as a zero-pitch screw-axis expressed in the $\{0\}$ frame

Linear velocity of the origin of

$$
\mathcal{S}_{3}=\left[\begin{array}{c}
\omega_{3} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
-\left(L_{1}+L_{2}\right) \\
0
\end{array}\right]
$$

Forward kinematics of a 3R planar open chain. For joint $3 \quad \mathcal{S}_{3}=\left[\begin{array}{c}\omega_{3} \\ v_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -\left(L_{1}+L_{2}\right) \\ 0\end{array}\right]$
$\{0\}$ in the $\{0\}$ frame

$$
v_{3}=-\omega_{3} \times q_{3}
$$

$$
q_{3}=\left(L_{1}+L_{2}, 0,0\right)
$$

Forward Kinematics

$$
\begin{array}{ll}
{\left[\mathcal{S}_{3}\right]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & -\left(L_{1}+L_{2}\right) \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} & T_{04}=e^{\left[\mathcal{S}_{3}\right] \theta_{3}} M
\end{array} \quad\left(\text { for } \theta_{1}=\theta_{2}=0\right) ~\left[\begin{array}{ccc}
T_{04}=e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} M & \left(\text { for } \theta_{1}=0\right) & {\left[\mathcal{S}_{2}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & -L_{1} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\mathcal{S}_{1}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{array}\right.
$$

Product of Exponentials Formula

- Each link apply a screw motion to all the outward links
- Base frame $\{\mathrm{s}\}$
- End-effector frame \{b\}

$$
M \in S E(3)
$$

\{b\} in $\{s\}$ when all the joint values are zeros

$$
T=e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M
$$

$\{b\}$ in $\{s\}$ when joint n with value θ_{n}

Product of Exponentials Formula

$T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n-1}\right] \theta_{n-1}} e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M$
Joint values $\left(\theta_{1}, \ldots, \theta_{n}\right)$

- Space form of the product of exponentials formula
- Unlike D-H representation, no link reference frames need to be defined

Product of Exponentials Formula

A 3R spatial open chain

$$
\begin{aligned}
T(\theta) & =e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} M \\
M & =\left[\begin{array}{cccc}
0 & 0 & 1 & L_{1} \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & -L_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\mathcal{S}_{1}=\left(\omega_{1}, v_{1}\right) \quad \omega_{1}=(0,0,1) \quad v_{1}=(0,0,0)
$$

$$
\omega_{2}=(0,-1,0) \quad q_{2}=\left(L_{1}, 0,0\right)
$$

$$
v_{2}=-\omega_{2} \times q_{2}=\left(0,0,-L_{1}\right)
$$

$$
\omega_{3}=(1,0,0) \quad q_{3}=\left(0,0,-L_{2}\right)
$$

$$
v_{3}=-\omega_{3} \times q_{3}=\left(0,-L_{2}, 0\right)
$$

Cross Product

- Matrix notation

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k} \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
\end{aligned}
$$

Product of Exponentials Formula

A 3R spatial open chain

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(0,0,0)$
2	$(0,-1,0)$	$\left(0,0,-L_{1}\right)$
3	$(1,0,0)$	$\left(0, L_{2}, 0\right)$

Product of Exponentials Formula

PoE forward kinematics for the 6R open chain

First three joints are at the same location

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 3 L \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(0,0,0)$
2	$(0,1,0)$	$(0,0,0)$
3	$(-1,0,0)$	$(0,0,0)$
4	$(-1,0,0)$	$(0,0, L)$
5	$(-1,0,0)$	$(0,0,2 L)$
6	$(0,1,0)$	$(0,0,0)$

Product of Exponentials Formula

Product of Exponentials Formula

Universal Robots' UR5 6R robot arm

$$
M=\left[\begin{array}{cccc}
-1 & 0 & 0 & L_{1}+L_{2} \\
0 & 0 & 1 & W_{1}+W_{2} \\
0 & 1 & 0 & H_{1}-H_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(0,0,0)$
2	$(0,1,0)$	$\left(-H_{1}, 0,0\right)$
3	$(0,1,0)$	$\left(-H_{1}, 0, L_{1}\right)$
4	$(0,1,0)$	$\left(-H_{1}, 0, L_{1}+L_{2}\right)$
5	$(0,0,-1)$	$\left(-W_{1}, L_{1}+L_{2}, 0\right)$
6	$(0,1,0)$	$\left(H_{2}-H_{1}, 0, L_{1}+L_{2}\right)$

$$
\begin{aligned}
& W_{1}=109 \mathrm{~mm}, W_{2}=82 \mathrm{~mm}, L_{1}=425 \mathrm{~mm} \\
& L_{2}=392 \mathrm{~mm}, H_{1}=89 \mathrm{~mm} \quad H_{2}=95 \mathrm{~mm}
\end{aligned}
$$

Product of Exponentials Formula

$$
\theta_{2}=-\pi / 2 \text { and } \theta_{5}=\pi / 2
$$

$$
\begin{gathered}
e^{-\left[\mathcal{S}_{2}\right] \pi / 2}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0.089 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0.089 \\
0 & 0 & 0 & 1
\end{array}\right], \quad e^{\left[\mathcal{S}_{5}\right] \pi / 2}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0.708 \\
-1 & 0 & 0 & 0.926 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
T(\theta)=e^{-\left[\mathcal{S}_{2}\right] \pi / 2} e^{\left[\mathcal{S}_{5}\right] \pi / 2} M=\left[\begin{array}{cccc}
0 & -1 & 0 & 0.095 \\
1 & 0 & 0 & 0.109 \\
0 & 0 & 1 & 0.988 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
T(\theta) & =e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} e^{\left[\mathcal{S}_{4}\right] \theta_{4}} e^{\left[\mathcal{S}_{5}\right] \theta_{5}} e^{\left[\mathcal{S}_{6}\right] \theta_{6}} M \\
& =I e^{-\left[\mathcal{S}_{2}\right] \pi / 2} I^{2} e^{\left[\mathcal{S}_{5}\right] \pi / 2} I M \\
& =e^{-\left[\mathcal{S}_{2}\right] \pi / 2} e^{\left[\mathcal{S}_{5}\right] \pi / 2} M
\end{aligned}
$$

Universal Robots' UR5 6R robot arm

$$
W_{1}=109 \mathrm{~mm}, W_{2}=82 \mathrm{~mm}, L_{1}=425 \mathrm{~mm}
$$

$$
L_{2}=392 \mathrm{~mm}, H_{1}=89 \mathrm{~mm} \quad H_{2}=95 \mathrm{~mm}
$$

Recall Twists

- Spatial twist (spatial velocity in the space frame)
$\mathcal{V}_{s}=\left[\begin{array}{c}\omega_{s} \\ v_{s}\end{array}\right] \in \mathbb{R}^{6} \quad\left[\mathcal{V}_{s}\right]=\left[\begin{array}{cc}{\left[\omega_{s}\right]} & v_{s} \\ 0 & 0\end{array}\right]=\dot{T} T^{-1} \in \operatorname{se}(3)$
- Relationship

$$
\begin{array}{rlrl}
{\left[\mathcal{V}_{b}\right]} & =T^{-1} \dot{T} & {\left[\mathcal{V}_{s}\right]=T\left[\mathcal{V}_{b}\right] T^{-1}} \\
& =T^{-1}\left[\mathcal{V}_{s}\right] T
\end{array}
$$

Recall Adjoint Representations

- The adjoint representation of $T=(R, p) \in S E(3)$

$$
\left[\mathrm{Ad}_{T}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

- The adjoint map associated with T

$$
\begin{array}{ll}
\mathcal{V} \in \mathbb{R}^{6} \quad \mathcal{V}^{\prime}=\left[\operatorname{Ad}_{T}\right] \mathcal{V} \quad \text { or } \mathcal{V}^{\prime}=\mathrm{Ad}_{T}(\mathcal{V}) \\
{[\mathcal{V}] \in \operatorname{se}(3) \quad\left[\mathcal{V}^{\prime}\right]=T[\mathcal{V}] T^{-1}}
\end{array}
$$

Recall Twists

$$
\begin{aligned}
& \mathcal{V}_{s}=\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]=\left[\operatorname{Ad}_{T_{s b}}\right] \mathcal{V}_{b} \\
& \mathcal{V}_{b}=\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]=\left[\begin{array}{cc}
R^{\mathrm{T}} & 0 \\
-R^{\mathrm{T}}[p] & R^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{l}
\omega_{s} \\
v_{s}
\end{array}\right]=\left[\operatorname{Ad}_{T_{b s}}\right] \mathcal{V}_{s}
\end{aligned}
$$

In general

$$
\mathcal{V}_{c}=\left[\mathrm{Ad}_{T_{c d}}\right] \mathcal{V}_{d}, \quad \mathcal{V}_{d}=\left[\operatorname{Ad}_{T_{d c}}\right] \mathcal{V}_{c}
$$

Screw Axes in the End-Effector Frame

- Proposition $e^{M^{-1} P M}=M^{-1} e^{P} M \quad M e^{M^{-1} P M}=e^{P} M$
- PoE formula

$$
\begin{aligned}
T(\theta) & =e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M \\
& =e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots M e^{M^{-1}\left[\mathcal{S}_{n}\right] M \theta_{n}} \\
& =e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots M e^{M^{-1}\left[\mathcal{S}_{n-1}\right] M \theta_{n-1}} e^{M^{-1}\left[\mathcal{S}_{n}\right] M \theta_{n}} \\
& =M e^{M^{-1}\left[\mathcal{S}_{1}\right] M \theta_{1}} \cdots e^{M^{-1}\left[\mathcal{S}_{n-1}\right] M \theta_{n-1}} e^{M^{-1}\left[\mathcal{S}_{n}\right] M \theta_{n}} \\
& =M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{n-1}\right] \theta_{n-1}} e^{\left[\mathcal{B}_{n}\right] \theta_{n}}
\end{aligned}
$$

$$
\left[\mathcal{B}_{i}\right]=M^{-1}\left[\mathcal{S}_{i}\right] M \quad \mathcal{B}_{i}=\left[\operatorname{Ad}_{M^{-1}}\right] \mathcal{S}_{i}, i=1, \ldots, n
$$

Body form of the product of exponentials formula

Screw Axes in the End-Effector Frame

PoE forward kinematics for the 6R open chain

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 3 L \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(0,0,0)$
2	$(0,1,0)$	$(0,0,0)$
3	$(-1,0,0)$	$(0,0,0)$
4	$(-1,0,0)$	$(0,0, L)$
5	$(-1,0,0)$	$(0,0,2 L)$
6	$(0,1,0)$	$(0,0,0)$

Space form

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(-3 L, 0,0)$
2	$(0,1,0)$	$(0,0,0)$
3	$(-1,0,0)$	$(0,0,-3 L)$
4	$(-1,0,0)$	$(0,0,-2 L)$
5	$(-1,0,0)$	$(0,0,-L)$
6	$(0,1,0)$	$(0,0,0)$

Body form

Screw Axes in the End-Effector Frame

Barrett Technology's WAM 7R robot arm at its zero configuration
$M=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_{1}+L_{2}+L_{3} \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\mathcal{B}_{i}=\left(\omega_{i}, v_{i}\right)
$$

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(0,0,0)$
2	$(0,1,0)$	$\left(L_{1}+L_{2}+L_{3}, 0,0\right)$
3	$(0,0,1)$	$(0,0,0)$
4	$(0,1,0)$	$\left(L_{2}+L_{3}, 0, W_{1}\right)$
5	$(0,0,1)$	$(0,0,0)$
6	$(0,1,0)$	$\left(L_{3}, 0,0\right)$
7	$(0,0,1)$	$(0,0,0)$

Screw Axes in the End-Effector Frame

Barrett Technology's WAM 7R robot arm at its zero configuration

Summary

- Forward kinematics
- Product of Exponentials Formula
- Space form
- Body form

Further Reading

- Chapter 4 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.

