Forward Kinematics and Product of Exponentials Formula

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation

Professor Yu Xiang

The University of Texas at Dallas

ullet Forward kinematics of a robot: calculation of the position and orientation of its end-effector from its joint coordinates eta

Recall robot links and joints

- General cases
 - Attaching frames to links
 - Using homogeneous transformations

$$T_{04} = T_{01}T_{12}T_{23}T_{34}$$

$$T_{01} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & 0 \\ \sin \theta_1 & \cos \theta_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} T_{12} = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & 0 & L_1 \\ \sin \theta_2 & \cos \theta_2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{23} = \begin{bmatrix} \cos \theta_3 & -\sin \theta_3 & 0 & L_2 \\ \sin \theta_3 & \cos \theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_{34} = \begin{bmatrix} 1 & 0 & 0 & L_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward kinematics of a 3R planar open chain.

 $T_{i-1,i}$ Depends only on the joint variable $\, heta_i$

- Method 1: uses homogeneous transformations
 - Need to define the coordinates of frames
 - Denavit-Hartenberg Parameters

- Method 2: uses screw-axis representations of transformations
 - No need to define frame references

Screw-Axis Representations

Screw axis: motion of a screw

https://mecharithm.com/learning/lesson/screw-motion-and-exponential-coordinates-of-robot-motions-11

• Chasles-Mozzi theorem: every rigid-body displacement can be expressed as displacement along a fixed screw axis S in space

Exponential Coordinates of Rigid-Body Motions

Velocity of a 3D point

$$\dot{p} = v + \omega \times p$$

$$\sim \lceil [\omega] \quad v \rceil$$

$$\tilde{\dot{p}} = \begin{vmatrix} \begin{bmatrix} \omega \end{bmatrix} & v \\ 0 & 0 \end{vmatrix} \tilde{p}$$

$$[\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \in se(3)$$

$$\tilde{p}(t) = e^{[\mathcal{V}]t} \tilde{p}(0)$$

Exponential Coordinates of Rigid-Body Motions

Exponential coordinates of a homogeneous transformation T

$$\exp: [S]\theta \in se(3) \rightarrow T \in SE(3)$$

$$\log: T \in SE(3) \rightarrow [S]\theta \in se(3)$$

Screw axis
$$[\mathcal{S}] = \left| \begin{array}{cc} [\omega] & v \\ 0 & 0 \end{array} \right| \in se(3)$$

- A different approach
- Define M to the position and orientation of frame {4} when all the joint angles are zeros ("home" or "zero" position of the robot)

$$M = \begin{bmatrix} 1 & 0 & 0 & L_1 + L_2 + L_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 Consider each revolute joint as a zero-pitch screw-axis expressed in the {0} frame

Forward kinematics of a 3R planar open chain. For joint 3
$$S_3 = \begin{bmatrix} \omega_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -(L_1 + L_2) \\ 0 \end{bmatrix}$$
 $\begin{cases} 0 \\ v_3 = -\omega_3 \times q_3 \\ q_3 = (L_1 + L_2, 0, 0) \end{cases}$

Linear velocity of the origin of

$$v_3 = -\omega_3 \times q_3$$

$$q_3 = (L_1 + L_2, 0, 0)$$

{0}

$$[\mathcal{S}_3] = \begin{bmatrix} \begin{bmatrix} \omega \end{bmatrix} & v \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -(L_1 + L_2) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad T_{04} = e^{[\mathcal{S}_3]\theta_3} M \qquad \text{(for } \theta_1 = \theta_2 = 0\text{)}$$

$$T_{04} = e^{[S_3]\theta_3} M$$
 (for $\theta_1 = \theta_2 = 0$)

$$T_{04} = e^{[S_2]\theta_2} e^{[S_3]\theta_3} M$$
 (for $\theta_1 = 0$)

$$[\mathcal{S}_2] = \left[egin{array}{cccc} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & -L_1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight]$$

$$T_{04} = e^{[S_1]\theta_1} e^{[S_2]\theta_2} e^{[S_3]\theta_3} M$$

a product of matrix exponentials (does not use any frame references, only {0} and M)

- Each link apply a screw motion to all the outward links
- Base frame {s}
- End-effector frame {b}

$$M \in SE(3)$$

{b} in {s} when all the joint values are zeros

$$T = e^{[\mathcal{S}_n]\theta_n} M$$

{b} in {s} when joint n with value $\ \theta_n$

$$T(\theta) = e^{[\mathcal{S}_1]\theta_1} \cdots e^{[\mathcal{S}_{n-1}]\theta_{n-1}} e^{[\mathcal{S}_n]\theta_n} M$$

Joint values $(\theta_1,\ldots,\theta_n)$

- Space form of the product of exponentials formula
- Unlike D-H representation, no link reference frames need to be defined

A 3R spatial open chain

$$T(\theta) = e^{[S_1]\theta_1} e^{[S_2]\theta_2} e^{[S_3]\theta_3} M$$

$$M = \begin{bmatrix} 0 & 0 & 1 & L_1 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & -L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathcal{S}_1 = (\omega_1, v_1)$$
 $\omega_1 = (0, 0, 1)$ $v_1 = (0, 0, 0)$

$$\omega_2 = (0, -1, 0)$$
 $q_2 = (L_1, 0, 0)$

$$v_2 = -\omega_2 \times q_2 = (0, 0, -L_1)$$

$$\omega_3 = (1, 0, 0)$$
 $q_3 = (0, 0, -L_2)$

$$v_3 = -\omega_3 \times q_3 = (0, -L_2, 0)$$

Cross Product

Matrix notation

$$\mathbf{a} imes\mathbf{b}=egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ \end{bmatrix}$$

$$egin{align} \mathbf{a} imes \mathbf{b} &= egin{bmatrix} a_2 & a_3 \ b_2 & b_3 \end{bmatrix} \mathbf{i} - egin{bmatrix} a_1 & a_3 \ b_1 & b_3 \end{bmatrix} \mathbf{j} + egin{bmatrix} a_1 & a_2 \ b_1 & b_2 \end{bmatrix} \mathbf{k} \ &= (a_2 b_3 - a_3 b_2) \mathbf{i} - (a_1 b_3 - a_3 b_1) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}, \end{split}$$

https://en.wikipedia.org/wiki/Cross_product

14

$$[\mathcal{S}_3] = \left[egin{array}{cccc} 0 & 0 & 0 & 0 \ 0 & 0 & -1 & -L_2 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight]$$

i	ω_i	v_i
1	(0,0,1)	(0,0,0)
2	(0, -1, 0)	$(0,0,-L_1)$
3	(1,0,0)	$(0, L_2, 0)$

PoE forward kinematics for the 6R open chain

First three joints are at the same location

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	ω_i	v_i
1	(0,0,1)	(0,0,0)
2	(0, 1, 0)	(0,0,0)
3	(-1,0,0)	(0,0,0)
4	(-1,0,0)	(0, 0, L)
5	(-1,0,0)	(0, 0, 2L)
6	(0, 1, 0)	(0,0,0)

The RRPRRR spatial open chain

$$M = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & L_1 + L_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

i	ω_i	v_{i}
1	(0,0,1)	(0, 0, 0)
2	(1,0,0)	(0, 0, 0)
3	(0,0,0)	(0, 1, 0)
4	(0,1,0)	(0, 0, 0)
5	(1,0,0)	$(0,0,-L_1)$
6	(0,1,0)	(0, 0, 0)

$$M = \begin{bmatrix} -1 & 0 & 0 & L_1 + L_2 \\ 0 & 0 & 1 & W_1 + W_2 \\ 0 & 1 & 0 & H_1 - H_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	ω_i	v_i
1	(0,0,1)	(0, 0, 0)
2	(0, 1, 0)	$(-H_1,0,0)$
3	(0, 1, 0)	$(-H_1,0,L_1)$
4	(0, 1, 0)	$(-H_1,0,L_1+L_2)$
5	(0,0,-1)	$(-W_1, L_1 + L_2, 0)$
6	(0, 1, 0)	$(H_2-H_1,0,L_1+L_2)$

Universal Robots' UR5 6R robot arm

$$W_1 = 109 \text{ mm}, W_2 = 82 \text{ mm}, L_1 = 425 \text{ mm}$$

$$L_2 = 392 \text{ mm}, H_1 = 89 \text{ mm}$$
 $H_2 = 95 \text{ mm}$

$$\theta_2 = -\pi/2 \text{ and } \theta_5 = \pi/2$$

$$T(\theta) = e^{[S_1]\theta_1} e^{[S_2]\theta_2} e^{[S_3]\theta_3} e^{[S_4]\theta_4} e^{[S_5]\theta_5} e^{[S_6]\theta_6} M$$

$$= I e^{-[S_2]\pi/2} I^2 e^{[S_5]\pi/2} I M$$

$$= e^{-[S_2]\pi/2} e^{[S_5]\pi/2} M$$

$$e^{-[S_2]\pi/2} = \begin{bmatrix} 0 & 0 & -1 & 0.089 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0.089 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad e^{[S_5]\pi/2} = \begin{bmatrix} 0 & 1 & 0 & 0.708 \\ -1 & 0 & 0 & 0.926 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$W_1 = 109 \text{ mm}, W_2 = 82 \text{ mm}, L_1 = 425 \text{ mm}$$

$$L_2 = 392 \text{ mm}, H_1 = 89 \text{ mm}$$
 $H_2 = 95 \text{ mm}$

$$T(\theta) = e^{-[S_2]\pi/2} e^{[S_5]\pi/2} M = \begin{bmatrix} 0 & -1 & 0 & 0.095 \\ 1 & 0 & 0 & 0.109 \\ 0 & 0 & 1 & 0.988 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Recall Twists

• Spatial twist (spatial velocity in the space frame)

$$\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix} \in \mathbb{R}^6 \qquad [\mathcal{V}_s] = \begin{bmatrix} [\omega_s] & v_s \\ 0 & 0 \end{bmatrix} = \dot{T}T^{-1} \in se(3)$$

Relationship

$$\begin{bmatrix} \mathcal{V}_b \end{bmatrix} = T^{-1}\dot{T} = T^{-1} [\mathcal{V}_s] T$$

$$[\mathcal{V}_s] = T [\mathcal{V}_b] T^{-1}$$

Recall Adjoint Representations

• The adjoint representation of $T=(R,p)\in SE(3)$

$$[Ad_T] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

The adjoint map associated with T

$$\mathcal{V} \in \mathbb{R}^6$$
 $\mathcal{V}' = [\mathrm{Ad}_T] \mathcal{V}$ or $\mathcal{V}' = \mathrm{Ad}_T(\mathcal{V})$

$$[\mathcal{V}] \in se(3) \qquad [\mathcal{V}'] = T[\mathcal{V}]T^{-1}$$

Recall Twists

$$\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix} = \begin{bmatrix} R & 0 \\ pR & R \end{bmatrix} \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} = [\mathrm{Ad}_{T_{sb}}]\mathcal{V}_b$$

$$\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} = \begin{bmatrix} R^{\mathrm{T}} & 0 \\ -R^{\mathrm{T}}[p] & R^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \omega_s \\ v_s \end{bmatrix} = [\mathrm{Ad}_{T_{bs}}]\mathcal{V}_s$$

In general

$$\mathcal{V}_c = [\mathrm{Ad}_{T_{cd}}]\mathcal{V}_d, \qquad \mathcal{V}_d = [\mathrm{Ad}_{T_{dc}}]\mathcal{V}_c$$

9/27/2023 Yu Xiang 21

- Proposition $e^{M^{-1}PM}=M^{-1}e^PM$ $Me^{M^{-1}PM}=e^PM$
- PoE formula

$$T(\theta) = e^{[\mathcal{S}_{1}]\theta_{1}} \cdots e^{[\mathcal{S}_{n}]\theta_{n}} M$$

$$= e^{[\mathcal{S}_{1}]\theta_{1}} \cdots M e^{M^{-1}[\mathcal{S}_{n}]M\theta_{n}}$$

$$= e^{[\mathcal{S}_{1}]\theta_{1}} \cdots M e^{M^{-1}[\mathcal{S}_{n-1}]M\theta_{n-1}} e^{M^{-1}[\mathcal{S}_{n}]M\theta_{n}}$$

$$= M e^{M^{-1}[\mathcal{S}_{1}]M\theta_{1}} \cdots e^{M^{-1}[\mathcal{S}_{n-1}]M\theta_{n-1}} e^{M^{-1}[\mathcal{S}_{n}]M\theta_{n}}$$

$$= M e^{[\mathcal{B}_{1}]\theta_{1}} \cdots e^{[\mathcal{B}_{n-1}]\theta_{n-1}} e^{[\mathcal{B}_{n}]\theta_{n}},$$

$$[\mathcal{B}_{i}] = M^{-1}[\mathcal{S}_{i}]M \qquad \mathcal{B}_{i} = [\mathrm{Ad}_{M^{-1}}]\mathcal{S}_{i}, \ i = 1, \dots, n$$

Body form of the product of exponentials formula

Yu Xiang

PoE forward kinematics for the 6R open chain

$$M = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

i	ω_i	v_i	
1	(0,0,1)	(0,0,0)	
2	(0, 1, 0)	(0,0,0)	
3	(-1,0,0)	(0,0,0)	
4	(-1,0,0)	(0, 0, L)	
5	(-1,0,0)	(0,0,2L)	
6	(0,1,0)	(0,0,0)	

Space	form

i	ω_i	v_i
1	(0,0,1)	(-3L, 0, 0)
2	(0, 1, 0)	(0,0,0)
3	(-1,0,0)	(0,0,-3L)
4	(-1,0,0)	(0,0,-2L)
5	(-1,0,0)	(0, 0, -L)
6	(0,1,0)	(0,0,0)

Body form

Barrett Technology's WAM 7R robot arm at its zero configuration

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_1 + L_2 + L_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathcal{B}_i = (\omega_i, v_i)$$

i	ω_i	v_i
1	(0,0,1)	(0, 0, 0)
2	(0, 1, 0)	$(L_1 + L_2 + L_3, 0, 0)$
3	(0,0,1)	(0,0,0)
4	(0, 1, 0)	$(L_2 + L_3, 0, W_1)$
5	(0,0,1)	(0,0,0)
6	(0, 1, 0)	$(L_3, 0, 0)$
7	(0,0,1)	(0,0,0)

Barrett Technology's WAM 7R robot arm at its zero configuration

Summary

Forward kinematics

- Product of Exponentials Formula
 - Space form
 - Body form

Further Reading

• Chapter 4 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.