Screw Axes and Exponential Coordinates of Rigid-Body Motions

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

Twists

- Body twist (spatial velocity in the body frame)

$$
\mathcal{V}_{b}=\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right] \in \mathbb{R}^{6}
$$

matrix representation

$$
T^{-1} \dot{T}=\left[\mathcal{V}_{b}\right]=\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0 & 0
\end{array}\right] \in \operatorname{se}(3)
$$

$$
\left[\omega_{b}\right] \in S O(3) \quad v_{b} \in \mathbb{R}^{3} \quad \text { linear velocity of a point at the origin of }\{b\} \text { expressed in }\{b\}
$$

Twists

- Spatial twist (spatial velocity in the space frame)
$\mathcal{V}_{s}=\left[\begin{array}{c}\omega_{s} \\ v_{s}\end{array}\right] \in \mathbb{R}^{6} \quad\left[\mathcal{V}_{s}\right]=\left[\begin{array}{cc}{\left[\omega_{s}\right]} & v_{s} \\ 0 & 0\end{array}\right]=\dot{T} T^{-1} \in \operatorname{se}(3)$
- Relationship

$$
\begin{array}{rlrl}
{\left[\mathcal{V}_{b}\right]} & =T^{-1} \dot{T} & {\left[\mathcal{V}_{s}\right]=T\left[\mathcal{V}_{b}\right] T^{-1}} \\
& =T^{-1}\left[\mathcal{V}_{s}\right] T
\end{array}
$$

Twists Example

Rotation can cause linear velocity

- Pure Angular velocity $\mathrm{W}=2 \mathrm{rad} / \mathrm{s}$

$$
\begin{array}{cc}
r_{s}=(2,-1,0) & r_{b}=(2,-1.4,0) \\
\omega_{s}=(0,0,2) & \omega_{b}=(0,0,-2)
\end{array}
$$

Linear velocity of the car

$$
\begin{aligned}
& v_{s}=\omega_{s} \times\left(-r_{s}\right)=r_{s} \times \omega_{s}=(-2,-4,0) \\
& v_{b}=\omega_{b} \times\left(-r_{b}\right)=r_{b} \times \omega_{b}=(2.8,4,0)
\end{aligned}
$$

The Screw Interpretation of a Twist

- Screw axis: motion of a screw
- Rotating about the axis while translating along the axis

The Screw Interpretation of a Twist

- Screw axis: motion of a screw
- Rotating about the axis while translating along the axis

The Screw Interpretation of a Twist

- For any twist $\mathcal{V}=(\omega, v) \quad \omega \neq 0$
- These exists $\{q, \hat{s}, h\} \quad \dot{\theta}$

$$
\hat{s}=\omega /\|\omega\| \quad \dot{\theta}=\|\omega\|
$$

$$
h=\hat{\omega}^{\mathrm{T}} v / \dot{\theta}
$$

portion of v parallel to the screw axis
$-\hat{s} \dot{\theta} \times q$ provides the portion of v orthogonal to the screw axis (choose q based on this term)

$$
\text { If } \omega=0
$$

$$
\hat{s}=v /\|v\|
$$

$\dot{\theta}$ is interpreted as the linear velocity $\|v\|$ along \hat{s}

The Screw Interpretation of a Twist

- Another representation of the screw axis

$$
\begin{array}{ll}
\text { If } \omega \neq 0 & \mathcal{S}=\mathcal{V} /\|\omega\|=(\omega /\|\omega\|, v /\|\omega\|) \\
\mathcal{V}=(\omega, v) & \dot{\theta}=\|\omega\| \quad \mathcal{S} \dot{\theta}=\mathcal{V} \\
\text { If } \omega=0 & \mathcal{S}=\mathcal{V} /\|v\|=(0, v /\|v\|) \\
& \dot{\theta}=\|v\| \quad \mathcal{S} \dot{\theta}=\mathcal{V}
\end{array}
$$

Screw Axis

- A screw axis is a normalized twist $\quad \mathcal{S}=\left[\begin{array}{l}\omega \\ v\end{array}\right] \in \mathbb{R}^{6} \quad \mathcal{S} \dot{\theta}=\mathcal{V}$

$$
\begin{gathered}
{[\mathcal{S}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \operatorname{se}(3) \quad[\omega]=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \in \operatorname{so}(3)} \\
\mathcal{S}_{a}=\left[\mathrm{Ad}_{T_{a b}}\right] \mathcal{S}_{b}, \quad \mathcal{S}_{b}=\left[\mathrm{Ad}_{T_{b a}}\right] \mathcal{S}_{a}
\end{gathered}
$$

Twists and Screw Axes

- Twist

$$
\mathcal{V}_{b}=\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right] \in \mathbb{R}^{6} \quad \mathcal{V}_{s}=\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right] \in \mathbb{R}^{6}
$$

- A screw axis is a normalized twist

$$
\mathcal{S} \dot{\theta}=\mathcal{V} \quad \mathcal{S}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right] \in \mathbb{R}^{6}
$$

Exponential Coordinates of Rigid-Body Motions

- Chasles-Mozzi theorem: every rigid-body displacement can be expressed as displacement along a fixed screw axis S in space
- Exponential coordinates of a homogeneous transformation T

$$
\begin{array}{ll}
\mathcal{S}=(\omega, v) \quad & \|\omega\|=1 \quad \theta \text { Angle of rotation } \\
& \omega=0 \quad\|v\|=1 \quad \theta \text { Linear distance along the axis }
\end{array}
$$

Exponential Coordinates of Rigid-Body Motions

- Exponential coordinates of a homogeneous transformation T

$$
\begin{aligned}
\exp : & {[\mathcal{S}] \theta \in \operatorname{se}(3) } \\
\log : & \rightarrow T \in S E(3) \\
& T \mathcal{S}]=\left[\begin{array}{cc}
{[\mathcal{~}]} & v \\
0 & 0
\end{array}\right] \in \operatorname{se}(3)
\end{aligned}
$$

Matrix Exponential

$$
\begin{aligned}
& \begin{array}{l}
e^{[\mathcal{S}] \theta}=I+[\mathcal{S}] \theta+[\mathcal{S}]^{2} \frac{\theta^{2}}{2!}+[\mathcal{S}]^{3} \frac{\theta^{3}}{3!}+\cdots \\
=\left[\begin{array}{cc}
e^{[\omega] \theta} & G(\theta) v \\
0 & 1
\end{array}\right] \quad[\mathcal{S}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \operatorname{se}(3) \\
\operatorname{Rot}(\hat{\omega}, \theta)=e^{[\hat{\omega}] \theta}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2} \in S O(3) \\
G(\theta)=I \theta+[\omega] \frac{\theta^{2}}{2!}+[\omega]^{2} \frac{\theta^{3}}{3!}+\cdots \quad[\omega]^{3}=-[\omega] \\
=I \theta+\left(\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\frac{\theta^{6}}{6!}-\cdots\right)[\omega]+\left(\frac{\theta^{3}}{3!}-\frac{\theta^{5}}{5!}+\frac{\theta^{7}}{7!}-\cdots\right)[\omega]^{2} \\
=I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2}
\end{array}
\end{aligned}
$$

Matrix Exponential

$$
\begin{aligned}
& \mathcal{S}=(\omega, v) \quad \theta \in \mathbb{R} \\
& \text { If }\|\omega\|=1 \quad e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
e^{[\omega] \theta} & \left(I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2}\right) v \\
0 & 1
\end{array}\right] \\
& \qquad \operatorname{Rot}(\hat{\omega}, \theta)=e^{[\hat{\omega}] \theta}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2} \in S O(3) \\
& \text { If } \quad \omega=0 \text { and }\|v\|=1 \quad e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
I & v \theta \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Matrix Logarithm

- Given $(R, p) \in S E(3)$, one can find $\mathcal{S}=(\omega, v)$ and θ

$$
e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]
$$

- Matrix Logarithm of $T=(R, p)$

$$
[\mathcal{S}] \theta=\left[\begin{array}{cc}
{[\omega] \theta} & v \theta \\
0 & 0
\end{array}\right] \in \operatorname{se}(3)
$$

Matrix Logarithm Algorithm

- Given $(R, p) \in S E(3)$, how to find $\mathcal{S}=(\omega, v)$ and θ ?
- If $R=I$ then set $\omega=0, v=p /\|p\|$, and $\theta=\|p\|$
- Otherwise, use the matrix logarithm on $\mathrm{SO}(3)$ to determine ω, θ for R (lecture 7)

$$
\begin{gathered}
v=G^{-1}(\theta) p \\
G^{-1}(\theta)=\frac{1}{\theta} I-\frac{1}{2}[\omega]+\left(\frac{1}{\theta}-\frac{1}{2} \cot \frac{\theta}{2}\right)[\omega]^{2}
\end{gathered}
$$

Matrix Exponential and Matrix Logarithm

motion occurs in the $\hat{\mathrm{x}}_{\mathrm{s}}-\hat{\mathrm{y}}_{\mathrm{s}}$-plane Screw axis: $\hat{\mathrm{Z}}_{\mathrm{S}}$-aXiS Zero pitch

$$
\begin{array}{ll}
\mathcal{S}=(\omega, v) & \omega=\left(0,0, \omega_{3}\right) \\
\ln \{s\} & v=\left(v_{1}, v_{2}, 0\right)
\end{array}
$$

Matrix Exponential and Matrix Logarithm

Summary

- Screw Axes
- Exponential Coordinates of Rigid-Body Motions
- Matrix Logarithm of Rigid-Body Motions

Further Reading

- Chapter 3 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017
- Basics of Classical Lie Groups: The Exponential Map, Lie Groups, and Lie Algebras https://www.cis.upenn.edu/~cis6100/geombchap14.pdf
- Exponential Coordinate of Rigid Body Configuration. Prof. Wei Zhang, Southern University of Science and Technology, Shenzhen, China http://www.wzhanglab.site/wpcontent/uploads/2021/06/LN4 ExpCoordinate-a-print.pdf

