Screw Axes and Exponential Coordinates of Rigid-Body Motions

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation

Professor Yu Xiang

The University of Texas at Dallas

Twists

Body twist (spatial velocity in the body frame)

$$\mathcal{V}_b = \left| \begin{array}{c} \omega_b \\ v_b \end{array} \right| \in \mathbb{R}^6$$

matrix representation

$$T^{-1}\dot{T} = [\mathcal{V}_b] = \begin{bmatrix} \begin{bmatrix} \omega_b \end{bmatrix} & v_b \\ 0 & 0 \end{bmatrix} \in se(3)$$

$$[\omega_b] \in so(3)$$

$$v_h \in \mathbb{R}^3$$

 $\lceil \omega_b
ceil \in so(3)$ $v_b \in \mathbb{R}^3$ linear velocity of a point at the origin of {b} expressed in {b}

Twists

• Spatial twist (spatial velocity in the space frame)

$$\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix} \in \mathbb{R}^6 \qquad [\mathcal{V}_s] = \begin{bmatrix} [\omega_s] & v_s \\ 0 & 0 \end{bmatrix} = \dot{T}T^{-1} \in se(3)$$

Relationship

$$\begin{bmatrix} \mathcal{V}_b \end{bmatrix} = T^{-1}\dot{T} \\ = T^{-1} [\mathcal{V}_s] T$$

$$[\mathcal{V}_s] = T [\mathcal{V}_b] T^{-1}$$

Twists Example

Rotation can cause linear velocity

· Pure Angular velocity
$$w=2~\mathrm{rad/s}$$
 $r_s=(2,-1,0)$ $r_b=(2,-1.4,0)$ $\omega_s=(0,0,2)$ $\omega_b=(0,0,-2)$

Linear velocity of the car

$$v_s = \omega_s \times (-r_s) = r_s \times \omega_s = (-2, -4, 0),$$

 $v_b = \omega_b \times (-r_b) = r_b \times \omega_b = (2.8, 4, 0),$

- Screw axis: motion of a screw
 - Rotating about the axis while translating along the axis

https://mecharithm.com/learning/lesson/screw-motion-and-exponential-coordinates-of-robot-motions-11

- Screw axis: motion of a screw
 - Rotating about the axis while translating along the axis

Screw axis $\,{\cal S}\,$ is the collection $\{q,\hat{s},h\}$

$$q \in \mathbb{R}^3$$
 is a point on the axis

Twist about S with angular velocity $\hat{ heta}$

$$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \hat{s}\dot{\theta} \\ -\hat{s}\dot{\theta} \times q + h\hat{s}\dot{\theta} \end{bmatrix}$$

- For any twist $\mathcal{V}=(\omega,v)$ $\omega \neq 0$
- These exists $\{q,\hat{s},h\}$ $\dot{ heta}$

$$\hat{s} = \omega/\|\omega\|$$
 $\dot{\theta} = \|\omega\|$ $h = \hat{\omega}^{\mathrm{T}} v/\dot{\theta}$ portion of v parallel to the screw axis

 $-\hat{s}\dot{\theta}\times q$ provides the portion of v orthogonal to the screw axis (choose q based on this term)

If
$$\omega = 0$$

$$\hat{s} = v/||v||$$
 $\dot{\theta}$ is interpreted as the linear velocity $||v||$ along \hat{s}

Another representation of the screw axis

If
$$\omega \neq 0$$
 $\mathcal{S} = \mathcal{V}/\|\omega\| = (\omega/\|\omega\|, v/\|\omega\|)$ $\dot{\theta} = \|\omega\|$ $\mathcal{S}\dot{\theta} = \mathcal{V}$ If $\omega = 0$ $\mathcal{S} = \mathcal{V}/\|v\| = (0, v/\|v\|)$ $\dot{\theta} = \|v\|$ $\mathcal{S}\dot{\theta} = \mathcal{V}$

Screw Axis

• A screw axis is a normalized twist
$$\mathcal{S}=\left|egin{array}{c}\omega\\v\end{array}
ight|\in\mathbb{R}^6$$
 $\mathcal{S}\dot{ heta}=\mathcal{V}$

$$[\mathcal{S}] = \begin{bmatrix} \begin{bmatrix} \omega \end{bmatrix} & v \\ 0 & 0 \end{bmatrix} \in se(3) \qquad [\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3)$$

$$\mathcal{S}_a = [\mathrm{Ad}_{T_{ab}}]\mathcal{S}_b, \qquad \mathcal{S}_b = [\mathrm{Ad}_{T_{ba}}]\mathcal{S}_a$$

9/20/2023 Yu Xiang

Twists and Screw Axes

Twist

$$\mathcal{V}_b = \left[\begin{array}{c} \omega_b \\ v_b \end{array} \right] \in \mathbb{R}^6 \quad \mathcal{V}_s = \left[\begin{array}{c} \omega_s \\ v_s \end{array} \right] \in \mathbb{R}^6 \quad \left(\begin{array}{c} \omega_s \\ \end{array} \right)$$

A screw axis is a normalized twist

$$\mathcal{S}\dot{\theta} = \mathcal{V}$$

$$\mathcal{S} = \left[\begin{array}{c} \omega \\ v \end{array} \right] \in \mathbb{R}^6$$

Exponential Coordinates of Rigid-Body Motions

• Chasles-Mozzi theorem: every rigid-body displacement can be expressed as displacement along a fixed screw axis S in space

Exponential coordinates of a homogeneous transformation T

$$\mathcal{S} heta\in\mathbb{R}^6$$
 Screw axis Distance along the screw axis

$$\mathcal{S}=(\omega,v)$$
 $\|\omega\|=1$ θ Angle of rotation $\omega=0$ $\|v\|=1$ θ Linear distance along the axis

Exponential Coordinates of Rigid-Body Motions

Exponential coordinates of a homogeneous transformation T

$$\exp: [S]\theta \in se(3) \rightarrow T \in SE(3)$$

$$\log: T \in SE(3) \rightarrow [S]\theta \in se(3)$$

$$[\mathcal{S}] = \begin{bmatrix} \begin{bmatrix} \omega \end{bmatrix} & v \\ 0 & 0 \end{bmatrix} \in se(3)$$

Matrix Exponential

$$e^{[\mathcal{S}]\theta} = I + [\mathcal{S}]\theta + [\mathcal{S}]^2 \frac{\theta^2}{2!} + [\mathcal{S}]^3 \frac{\theta^3}{3!} + \cdots$$

$$= \begin{bmatrix} e^{[\omega]\theta} & G(\theta)v \\ 0 & 1 \end{bmatrix} \qquad [\mathcal{S}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \in se(3)$$

$$Rot(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta} = I + \sin\theta [\hat{\omega}] + (1 - \cos\theta)[\hat{\omega}]^2 \in SO(3)$$

$$G(\theta) = I\theta + [\omega] \frac{\theta^2}{2!} + [\omega]^2 \frac{\theta^3}{3!} + \cdots \qquad [\omega]^3 = -[\omega]$$

$$= I\theta + \left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \frac{\theta^6}{6!} - \cdots\right) [\omega] + \left(\frac{\theta^3}{3!} - \frac{\theta^5}{5!} + \frac{\theta^7}{7!} - \cdots\right) [\omega]^2$$

$$= I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2$$

Matrix Exponential

$$\mathcal{S} = (\omega, v) \quad \theta \in \mathbb{R}$$

If
$$\|\omega\| = 1$$

$$e^{[\mathcal{S}]\theta} = \begin{bmatrix} e^{[\omega]\theta} & (I\theta + (1-\cos\theta)[\omega] + (\theta-\sin\theta)[\omega]^2)v \\ 0 & 1 \end{bmatrix}$$

$$Rot(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta} = I + \sin\theta \, [\hat{\omega}] + (1 - \cos\theta)[\hat{\omega}]^2 \in SO(3)$$

If
$$\omega=0$$
 and $\|v\|=1$
$$e^{[\mathcal{S}]\theta}=\left[\begin{array}{cc} I & v\theta \\ 0 & 1 \end{array}\right]$$

9/20/2023 Yu Xiang 14

Matrix Logarithm

• Given $(R,p)\in SE(3)$, one can find $\mathcal{S}=(\omega,v)$ and θ

$$e^{[\mathcal{S}]\theta} = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right]$$

Matrix Logarithm of T = (R, p)

$$[\mathcal{S}]\theta = \begin{bmatrix} [\omega]\theta & v\theta \\ 0 & 0 \end{bmatrix} \in se(3)$$

Matrix Logarithm Algorithm

- Given $(R,p)\in SE(3)$, how to find $\mathcal{S}=(\omega,v)$ and θ ?
 - If R = I then set $\omega = 0$, v = p/||p||, and $\theta = ||p||$
 - Otherwise, use the matrix logarithm on SO(3) to determine $\,\omega$, $\, heta$ for R $\,$ (lecture 7)

$$v = G^{-1}(\theta)p$$

$$G^{-1}(\theta) = \frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\omega]^2 \qquad \text{Exercise}$$

9/20/2023 Yu Xiang 16

Matrix Exponential and Matrix Logarithm

$$\omega_3 = 1 \text{ rad/s}$$
 $q = (3.37, 3.37)$
 $T_{sb} = \begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} & 0 & 1 \\ \sin 30^{\circ} & \cos 30^{\circ} & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$$T_{sc} = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0 & 2\\ \sin 60^{\circ} & \cos 60^{\circ} & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

motion occurs in the $\hat{x}_s - \hat{y}_s$ -plane Screw axis: $\hat{z}_s - axis$ Zero pitch

Matrix Exponential and Matrix Logarithm

Seek screw motion to displace {b} to {c}

$$T_{sc} = e^{[S]\theta}T_{sb}$$

$$T_{sc}T_{sb}^{-1} = e^{[S]\theta} \quad [S] = \begin{bmatrix} 0 & -\omega_3 & 0 & v_1 \\ \omega_3 & 0 & 0 & v_2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Apply the matrix logarithm algorithm to $\,T_{sc}T_{sh}^{-1}$

$$[\mathcal{S}] = \begin{bmatrix} 0 & -1 & 0 & 3.37 \\ 1 & 0 & 0 & -3.37 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathcal{S} = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3.37 \\ -3.37 \\ 0 \end{bmatrix}, \quad \theta = \frac{\pi}{6} \text{ rad (or } 30^\circ)$$

Summary

Screw Axes

Exponential Coordinates of Rigid-Body Motions

Matrix Logarithm of Rigid-Body Motions

Further Reading

 Chapter 3 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017

• Basics of Classical Lie Groups: The Exponential Map, Lie Groups, and Lie Algebras https://www.cis.upenn.edu/~cis6100/geombchap14.pdf

 Exponential Coordinate of Rigid Body Configuration. Prof. Wei Zhang, Southern University of Science and Technology, Shenzhen, China http://www.wzhanglab.site/wp-content/uploads/2021/06/LN4 ExpCoordinate-a-print.pdf