Configuration Space

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

Robotics

What is the common phenomenon in these robots? Motion

Robot Mechanisms

- Links and Joints

Franka Emika

Franka Movement

Robot Mechanisms

- Links and Joints

Fetch Mobile Manipulator

Fetch Movement

Robot Mechanisms

- Links and Joints

https://thenewstack.io/boston-dynamics-agile-wheel-legged-humanoid-robot-performs-incredible-stunts/

Robot Joints

- Every joint connects exactly two links

- Revolute joint (R)
- Hinge joint
- Allows rotation motion about the joint axis

Robot Joints

- Prismatic Joint (P)
- Sliding joint or linear joint
- Allows translational motion along the direction of the joint axis

Prismatic

- Helical Joint (H)
- Screw joint
- Allows rotation and translation about a screw axis

Helical (H)

Robot Joints

- Cylindrical joint (C)
- Allows independent translations and rotations about a single fixed joint axis
- Universal joint (U)
- A pair of revolute joints with orthogonal joint axes

Cylindrical
(C)

Universal
(U)

Robot Joints

- Spherical joint (S)
- Ball-and-socket joint

Spherical
(S)

https://youtu.be/kztZu3uTyvM

Robot Joints

- Every joint connects exactly two links

Prismatic
(P)

Helical
(H)

Cylindrical
(C)

Universal
(U)

Spherical
(S)

Degrees of Freedom

- Maximum number of logically independent values
- Specify the position of a rigid body

(a)

(b)

(c)

Degrees of Freedom of Robot Joints

- Revolute joint
- 1 DOF
- Prismatic joint
- 1 DOF
- Helical joint
- 1 DOF

Degrees of Freedom of Robot Joints

- Cylindrical joint
- 2 DOF
- Universal joint
- 2 DOF
- Spherical joint
- 3 DOF

Cylindrical (C)

Universal (U)

Spherical (S)

Degrees of Freedom of Robot Joints

Revolute
(R)

Prismatic
(P)

Helical

Joint type	dof f	Constraints c between two planar rigid bodies	Constraints c between two spatial rigid bodies
Revolute (R)	1	2	5
Prismatic (P)	1	2	5
Helical (H)	1	N/A	5
Cylindrical (C)	2	N/A	4
Universal (U)	2	N/A	4
Spherical (S)	3	N/A	3

Degrees of Freedom of a Robot

- 4 revolute joints
- 4 DOFs

HEAD PAN JOINT HEAD TILT JOINT -

- 7 revolute joints for the arm
- 7 DOFs

Configuration Space of a Robot

- The configuration of a robot is a complete specification of the position of every point of the robot.
- The minimum number n of real-valued coordinates needed to represent the configuration is the number of degrees of freedom (DOF) of the robot.
- The n-dimensional space containing all possible configurations of the robot is called the configuration space (C-space).

- 4 revolute joints
- 4 DOFs
- The configuration of a robot is represented by a point in its C-space.

Configuration Space of a Robot

- The configuration space of the Fetch arm is a 7D space
- Each value in the 7D vector indicates the value of the revolute joint

Grübler's Formula

- The number of degrees of freedom of a mechanism with links and joints can be calculated using Grübler's formula

$$
\begin{aligned}
\text { degrees of freedom }= & (\text { sum of freedoms of the bodies })- \\
& (\text { number of independent constraints })
\end{aligned}
$$

- Consider the following setting
- A robot with N links, J joints (consider ground as one link)
- Each link has m DOF (planar link? spatial link?)
- Number of freedoms by joint i f_{i}
- Number of constraints by joint i c_{i}

$$
f_{i}+c_{i}=m
$$

Grübler's Formula

$$
\begin{aligned}
\text { dof } & =\underbrace{m(N-1)}_{\text {rigid body freedoms }}-\underbrace{\sum_{i=1}^{J} c_{i}}_{\text {joint constraints }} \quad \text { Ground is regarded as a link } \\
& =m(N-1)-\sum_{i=1}^{J}\left(m-f_{i}\right) \\
& =m(N-1-J)+\sum_{i=1}^{J} f_{i}
\end{aligned}
$$

Assume all joint constraints are independent.

Grübler's Formula

The planar four-bar linkage

- How many links?
- 4 (one is ground)
- Each link has m DOF. What is m?
- m=3

$$
\begin{aligned}
& \text { DOF }=m(N-1-J)+\sum_{i=1}^{J} f_{i} \\
& =3(4-1-4)+\sum_{i=1}^{4} 1
\end{aligned}
$$

Grübler's Formula

Slider-crank mechanism

- How many links?
- 4 (one is ground)
- Each link has m DOF. What is m?
- m=3
- How many joints?
- 3 revolute joints, 1 prismatic joint

$$
\begin{aligned}
\text { DOF } & =m(N-1-J)+\sum_{i=1}^{J} f_{i} \\
& =3(4-1-4)+\sum_{i=1}^{4} 1
\end{aligned}
$$

Grübler's Formula

- How many links?
- 8 (one is ground)
- Each link has m DOF. What is m?
- m=3
- How many joints?
- 8 revolute joints, 1 prismatic joint

A planar mechanism with two overlapping joints

Read more examples in the textbook Lynch \& Park

Open-Chain vs. Closed-Chain

- Open-chain mechanisms: without a closed loop
- Closed-chain mechanisms: with a closed loop
- Examples
- A person standing with both feet

Configuration Space Topology

- Configuration specifies the position of a robot
- For a robot with n joints, the configuration is a vector in \mathbb{R}^{n}
- C-space
- Joints may have limits, upper bound and lower bound
- Topology: shape of the space
- Consider all the feasible points in the configuration space

Configuration Space Topology

- n -dimensional Euclidean space \mathbb{R}^{n}
- n-dimensional sphere in a ($\mathrm{n}+1$)-dimensional Euclidean space S^{n}
- Two-dimensional surface of a sphere in three-dimensional space S^{2}
- The C-space can have different representations, but its shape is the same
- A point on a circle, angle θ, coordinates (x, y) $x^{2}+y^{2}=1$

Configuration Space Topology

- C-space as Cartesian product (all ordered pairs)
- A rigid body in the plane $\mathbb{R}^{2} \times S^{1}$
- A PR robot (Prismatic-Revolute) $\mathbb{R}^{1} \times S^{1}$
- Ignore joint limits
- A 2R robot $S^{1} \times S^{1}=T^{2} \quad$ n-dimensional surface of a torus in an ($\mathrm{n}+1$)-dimensional space

2 R robot arm

$$
T^{2}=S^{1} \times S^{1}
$$

$[0,2 \pi) \times[0,2 \pi)$
sample representation

Configuration Space Topology

- C-space of a planar rigid body (chassis of a mobile robot) with a 2R robot arm

$$
\mathbb{R}^{2} \times S^{1} \times T^{2}=\mathbb{R}^{2} \times T^{3}
$$

- C-space of a rigid body in 3D space
- 3D translation
- 3D rotation $\mathbb{R}^{3} \times S^{2} \times S^{1}$

Summary

- Robot links and joints
- Degrees of freedom of joints and robots
- Grübler's Formula
- Configuration space

Further Reading

- Chapter 2 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017 http://hades.mech.northwestern.edu/images/7/7f/MR.pdf
- T. Lozano-Perez. Spatial planning: a configuration space approach. A.I. Memo 605, MIT Artificial Intelligence Laboratory, 1980. http://people.csail.mit.edu/tlp/
- W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, 2002.

