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1 Introduction

For the robotics course project, students can choose a topic related to robotics and explore the
topic in one of the three different ways:

« Research-oriented. In this direction, students are going to propose a new idea that has not
been explored before in the literature, then implement the new idea and conduct experiments
to verify it.

« Application-oriented. In this direction, students can apply an existing robotics algorithm
or method to a new problem or a new application. For example, if a method is proposed for
domain A, the project can explore applying the method to domain B where different data
are collected.

« Implementation-oriented. In this direction, students can select an existing robotics algo-
rithm or method, and then implement it and perform experiments to verify the implementa-
tion. Since most robotics methods are open source these days, for implementation-oriented
projects, students cannot just use an open-source code and run experiments with it.

For project evaluation, all three categories will be considered equally. A project will be evaluated
according to its quality in terms of implementation, experiments, presentation, and writing,
regardless of its category. However, students are encouraged to consider research-oriented
projects and application-oriented projects. Even if the novelty introduced is incremental, it is
still exploring new things researchers have not tried before or applying an approach to new
applications. Moreover, if you use the Fetch mobile manipulator for experiments, it is possible to
try your methods on the real robot in my lab.

2 Proposal Format

The project proposal should be prepared using the ICRA double column latex format. A useful
online LaTex tool is Overleaf https://www.overleaf.com/. We have the ICRA latex template
accessible here through the overleaf: https://www.overleaf.com/read/rwmhwnwjkrmc. You can


https://www.overleaf.com/
https://www.overleaf.com/read/rwmhwnwjkrmc

download a copy of the template or make a copy on the overleaf for your own project, and then
edit it. Please make sure that you use this latex template for your project.

The project proposal should be 1-page PDF using the latex template with the following items:

Title. Let us give a name to your project.

Team Members. List the names of the team members as authors in the proposal. We expect
you to work in groups of 2-3 students for course projects.

Problem Statement. Describe the problem you are trying to solve in this project.

Approach. Describe your idea to solve the problem. It is fine if some details have not been
determined in the project proposal. But students should have rough ideas of how to proceed.

First, explicitly state which category the project is in: research-oriented, application-oriented,
or implementation-oriented. Second, for research-oriented projects, describe the proposed
idea and the novelty of the idea. For application-oriented projects, describe which ap-
proach is going to be used and how to apply this approach to a new application. For
implementation-oriented projects, describe which approach is to be implemented and the
plan for implementation.

Simulation Environments. Describe the simulation environment that will be used in the
project for robot experiments.

Evaluation. Describe how to evaluate the success of the project. For example, what
evaluation metrics will be used to evaluate the performance of the method?

References. Cite related works in the proposal.

There are two mandatory requirements for the course project:

The project needs to have a robot.

The project needs to have robot manipulation.

3 Suggested Topics

Based on the materials we cover in the lectures, we suggest the following topics for the course
project. However, the scope of the project is not limited to the topics mentioned below. Students
can explore other topics in robotics as well. Also, the references in the suggested topics are recent
representative works. Students can explore methods beyond these references and propose new
ideas for different topics.

Model-based Grasping. Using 3D models of objects, we can first estimate the 6D object
pose, i.e., 3D rotation and the 3D translation of objects [35] 27, 29, 5]. Then model-based
grasp planning [20] /6] and motion planning (e.g., Movelt [2]) approaches can be used for
robot grasping.

Model-free Grasping Planning. If we cannot get 3D models of objects but we can obtain
images or 3D point clouds of objects using object segmentation methods [36} 18] [14], grasps



can be planned using images or point clouds [19, 4, 21} [26]].

Reinforcement Learning for Grasping. Reinforcement learning approaches have been
widely studied for robot grasping. Most approaches focus on the use of RL for top-down
grasping (22,12} 10} 28| [41]]. A few works apply RL to 6D grasping [24, 31} 30].

Manipulation of Articulated or Deformable Objects. In addition to manipulation of rigid
objects, active research interests focus on manipulation of articulated objects [13} 34} 17, 37]
and deformable objects [40 23} 15, 16]].

Mobile Manipulation. In this case, a robot needs to navigate and manipulate objects [11}
25| [7, 91 33]]. Mobile manipulation is suitable for robots working in large environments.

Language-guided Manipulation. Humans can use natural language to instruct robots to
perform manipulation tasks [} 8] [32]].

Human-Robot Handover. Robots and humans can work together to perform tasks.
Human-robot handover is a simple example in which humans hand objects to robots or vice
versa [38] 31} 139, 3]].

4 Robot Simulator Resources

Here are a few robot simulators and simulation environments that you can use for the course
project.

Gazebo https://gazebosim.org/home. Gazebo is integrated with ROS. If your code runs in
Gazebo, it can be easily transferred to a real robot.

PyBullet https://pybullet.org/wordpress/. PyBullet is an easy-to-use simulator with
Python interfaces.

NVIDIA Isaac Gym https://developer.nvidia.com/isaac-gym. Isaac Gym can use GPU
acceleration and parallel runs of thousands of environments. It is useful for RL.

iGibson https://svl.stanford.edu/igibson/. iGibson is a simulation environment based
on PyBullet. It can be used for robot manipulation and navigation.

AI2-THOR https://ai2thor.allenai.org/, a simulation environment for navigation.
Habitat https://aihabitat.org/, a simulation environment for embodied Al

SAPIEN https://sapien.ucsd.edu/. SAPIEN contains asserts of articulated objects. It can
be useful for manipulating articulated objects.

BulletArm https://github.com/ColinKohler/BulletArm, a PyBullet-based simulation en-
vironment for benchmarking of several robot manipualtion tasks.
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5 Deep Learning Resources

The most recent vision methods leverage deep learning to train neural networks to tackle various
problems in robotics. If your project requires deep neural network training, you may need
GPUs for training. Google Colab is a great free resource for small amounts of GPU resources:
https://colab.research.google.com/. Two widely-used deep learning frameworks:

« PyTorch https://pytorch.org/

o TensorFlow https://www.tensorflow.org/

6 Resources from IRVL at UT Dallas

Our lab, Intelligent Robotics and Vision Lab (IRVL) at UT Dallas, provides several software that
can be useful for your projects:

+ The SceneReplica benchmark for robot grasping https: //irvlutd.github.io/SceneReplica/.
This project contains links to several object perception, grasp planning, and motion planning
software.

« Few-shot object recognition https://irvlutd.github.io/Proto-CLIP/
+ Reinforcement learning for 6D grasping https://sites.google.com/view/gaddpg

You can find more in https://labs.utdallas.edu/irvl/resources/.
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