Motion Planning: Algorithms

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

NIV

Motion Planning

- Motion planning: finding a robot motion from a start state to a goal state (A to B)
 - Avoids obstacles
 - Satisfies other constraints such as joint limits or torque limits
- Path planning is a purely geometric problem of finding a collision-free path

- Finds a minimum-cost path on a graph
- Cost: sum of the positive edge costs along the path
- Data structures used
 - OPEN: a list of nodes not explored yet
 - CLOSE: a list of nodes explored already
 - cost[node1, node2]: positive, edge cost, negative, no edge
 - past_cost[node]: minimum cost found so far to reach node from the start node
 - parent[node]: a link to the node preceding it in the shortest path found so far

- Initialization
 - The matrix cost is constructed to encode the edges
 - OPEN is the start node 1
 - past_cost[1] = 0, past_cost[node] = infinity
- At each step
 - Remove the first node from OPEN and call it current
 - The node current is added to CLOSE
 - If current in the goal set, finished
 - Otherwise, for each neighbor of current that is not in CLOSE, compute

tentative_past_cost

= past_cost[current] + cost[current,nbr]

- At each step (continued)
 - If tentative_past_cost < past_cost[nbr]
 past_cost[nbr] = tentative_past_cost
 parent[nbr] is set to current</pre>

Compute estimated total cost for nbr
est_total_cost[nbr] ← past_cost[nbr] +
 heuristic_cost_to_go(nbr)

Add nbr to the correct position in OPEN (a sorted list)

Found a shorter path

Algorithm 10.1 A^* search.

```
1: OPEN \leftarrow \{1\}
```

```
2: past_cost[1] \leftarrow 0, past_cost[node] \leftarrow infinity for node \in \{2, \dots, N\}
```

3: while OPEN is not empty do

- 4: current \leftarrow first node in OPEN, remove from OPEN
- 5: add current to CLOSED
- 6: if current is in the goal set then
- 7: return SUCCESS and the path to current
- 8: end if
- 9: for each nbr of current not in CLOSED do
- 10: tentative_past_cost \leftarrow past_cost[current]+cost[current,nbr]
- 11: **if** tentative_past_cost < past_cost[nbr] then
- 12: $past_cost[nbr] \leftarrow tentative_past_cost$
- 13: $parent[nbr] \leftarrow current$
- 14: put (or move) **nbr** in sorted list **OPEN** according to est_total_cost[nbr] ← past_cost[nbr] +

```
heuristic_cost_to_go(nbr)
```

- 15: **end if**
- 16: **end for**
- 17: end while
- 18: **return** FAILURE

- Guaranteed to return a minimumcost path
- Best-first searches

The empty circles represent the nodes in the *open set*, i.e., those that remain to be explored, and the filled ones are in the closed set. Color on each closed node indicates the distance from the goal: the greener, the closer. One can first see the A* moving in a straight line in the direction of the goal, then when hitting the obstacle, it explores alternative routes through the nodes from the open set.

https://en.wikipedia.org/wiki/A* search algorithm

10/18/2023

/2023

Grid Methods

- Discretize the configuration space into a grid
 - If the C-space is n dimension, we use k grid points along each dimension
 - The C-space is represented by k^n grid points
- We can apply the A* search algorithm for path planning with a C-space grid
 - Define the neighbors of a grid point
 - If only axis-aligned motions are used, the heuristic cost-togo should be based on Manhattan distance
 - A node nbr is added to OPEN only if the step from current to nbr is collision-free

Grid Methods

• A* grid-based path planner

Yu Xiang

Grid Methods

- Grid-based path planning is only suitable for low-dimensional C-space
 - Number of grid points $\,k^n\,$

>>> np.power(32, 7.0)
34359738368.0

• Multi-resolution grid representation

- A robot may not be able to reach all the neighbors in a grid
 - A car cannot move to the side
 - motions for a fast-moving robot arm should be planned in the state space, not just in the C-space

Sample trajectories emanating from three initial states in the phase space of a dynamic system

- Control for mobile robot (v, ω)
 - v: forward-backward linear velocity
 - w: angular velocity

Algorithm 10.2 Grid-based Dijkstra planner for a wheeled mobile robot.

1: OPEN $\leftarrow \{q_{\text{start}}\}$
2: past_cost[q_{start}] $\leftarrow 0$
3: counter $\leftarrow 1$
4: while OPEN is not empty and counter < MAXCOUNT do
5: $current \leftarrow first node in OPEN, remove from OPEN$
6: if current is in the goal set then
7: return SUCCESS and the path to current
8: end if
9: if current is not in a previously occupied C-space grid cell then
10: mark grid cell occupied
11: counter \leftarrow counter + 1
12: for each control in the discrete control set do
13: integrate control forward a short time Δt from current to q_{new}
14: if the path to q_{new} is collision-free then
15: compute cost of the path to q_{new}
16: place q_{new} in OPEN, sorted by cost
17: $parent[q_{new}] \leftarrow current$
18: end if
19: end for
20: end if
21: end while
22: return FAILURE

Reversals are penalized

10/18/2023

- For a robot arm, we can plan directly in the state space $\,(q,\dot{q})\,$
- Let $\mathcal{A}(q,\dot{q})$ represent the set of accelerations that are feasible on the basis of the limited joint torques
- Discretization
- Apply a breath-first search in the state space
 - To find a trajectory from a start state to a goal
 - When exploration is made from (q,\dot{q})
 - Use $\mathcal{A}(q,\dot{q})$ to find the control actions
 - Integrate the control actions for Δt

Sampling Methods

- Grid-based methods delivers optimal solutions subject to the chosen discretization, but computationally expensive for high DOFs
- Sampling methods
 - Randomly or deterministically sampling the C-space or state-space to find the motion plan
 - Give up resolution-optimal solutions of a grid search, quickly find solutions in high-dimensional state space
 - Most sampling methods are probabilistically complete: the probability of finding a solution, when one exists, approaches 100% as the number of samples goes to infinity

Algorithm 10.3 RRT algorithm.

- 1: initialize search tree T with x_{start}
- 2: while T is less than the maximum tree size do
- 3: $x_{\text{samp}} \leftarrow \text{sample from } \mathcal{X}$
- 4: $x_{\text{nearest}} \leftarrow \text{nearest node in } T \text{ to } x_{\text{samp}}$
- 5: employ a local planner to find a motion from x_{nearest} to x_{new} in the direction of x_{samp}
- 6: **if** the motion is collision-free **then**
- 7: add x_{new} to T with an edge from x_{nearest} to x_{new}
- 8: **if** x_{new} is in $\mathcal{X}_{\text{goal}}$ **then**
- 9: return SUCCESS and the motion to x_{new}
- 10: **end if**
- 11: **end if**
- 12: end while

13: **return** FAILURE

kinematic problems

x = q

- Line 3, uniform sampling with a bias towards goal
- Line 4, Euclidean distance
- Line 5, use a small distance d from

 x_{nearest} on the straight line to x_{samp}

dynamic problems

 $x = (q, \dot{q})$

A tree generated by applying a uniformly-distributed random motion from a randomly chosen tree node does not explore very far.

2000 nodes

A tree generated by the RRT algorithm

An animation of an RRT starting from iteration 0 to 10000

https://en.wikipedia.org/wiki/Rapidly-exploring random tree

- Bidirectional RRT
 - Grows two trees, one forward from $x_{
 m start}$, one backward from $x_{
 m goal}$
 - Alternating between growing the two trees $\,x_{
 m samp}$
 - Trying to connect the two trees by choosing $x_{
 m goal}$ from the other tree
 - Con: faster, can reach the exact goal
 - Pro: the local planer might not be able to connect the two trees

Bidirectional RRT

https://github.com/JakeInit/RRT

Yu Xiang

• RRT*

- Continually rewires the search tree to ensure that it always encodes the shortest path from $x_{\rm start}$ to each node in the tree
- To insert x_{new} to the tree, consider $x \in \mathcal{X}_{\mathrm{near}}$ sufficiently near to x_{new}
 - Collision free
 - Minimizes the total cost from $\,x_{
 m start}$ to $\,x_{
 m new}$
- Consider each $x \in X_{near}$ to see whether it could be reached at lower cost by a motion through x_{new} , change the parent of x to x_{new} (rewiring)

RRT vs. RRT*

RRT

RRT*

Probabilistic Roadmaps (PRMs)

- PRM uses sampling to build a roadmap representation of $\mathcal{C}_{ ext{free}}$
- Connect a start node $\, q_{
 m start}$ and a goal node $q_{
 m goal}$ to the roadmap
- Search for a path, e.g., using A*

Probabilistic Roadmaps (PRMs)

• PRM uses sampling to build a roadmap representation of ${\cal C}_{
m free}$

Algorithm 10.4 PRM roadmap construction algorithm (undirected graph).

- 1: for i = 1, ..., N do
- 2: $q_i \leftarrow \text{sample from } \mathcal{C}_{\text{free}}$
- 3: add q_i to R
- 4: end for
- 5: for i = 1, ..., N do
- 6: $\mathcal{N}(q_i) \leftarrow k$ closest neighbors of q_i
- 7: for each $q \in \mathcal{N}(q_i)$ do
- 8: **if** there is a collision-free local path from q to q_i and there is not already an edge from q to q_i **then**
- 9: add an edge from q to q_i to the roadmap R
- 10: **end if**
- 11: **end for**
- 12: **end for**
- 13: return R

Nonlinear Optimization

• The general motion planning problem

minimizing subject to

find

u(t), q(t), T J(u(t), q(t), T) $\dot{x}(t) = f(x(t), u(t)),$ $u(t) \in \mathcal{U},$ $q(t) \in \mathcal{C}_{\text{free}},$ $x(0) = x_{\text{start}},$ $x(T) = x_{\text{goal}}.$

Smoothing cost function

$$J = \frac{1}{2} \int_0^T \dot{u}^{\mathrm{T}}(t) \dot{u}(t) dt$$

 $\forall t \in [0, T],$

 $\forall t \in [0, T],$

 $\forall t \in [0, T],$

Covariant Hamiltonian Optimization for Motion Planning (CHOMP): Ratliff-Zucker-Bagnell-Srinivasa, ICRA'09

10/18/2023

OMG Planner: Trajectory Optimization and Grasp Selection

OMG Iter: 50

Modeling the goal set distribution

Wang-Xiang-Fox, RSS'20

10/18/2023

Yu Xiang

Summary

- Grid methods
 - A*
- Sampling methods
 - RRTs
 - PRMs
- Nonlinear optimization

Further Reading

- Chapter 10 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.
- A* search: P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100-107, July 1968.
- PRMs. L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps for fast path planning in high dimensional conguration spaces. IEEE Transactions on Robotics and Automation, 12:566-580, 1996.
- RRT. S. M. LaValle and J. J. Kuner. Rapidly-exploring random trees: Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions. A. K. Peters, Natick, MA, 2001.