Motion Planning: Algorithms

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

Motion Planning

- Motion planning: finding a robot motion from a start state to a goal state (A to B)
- Avoids obstacles
- Satisfies other constraints such as joint limits or torque limits
- Path planning is a purely geometric problem of finding a collision-free path

A* Search Algorithm

- Finds a minimum-cost path on a graph
- Cost: sum of the positive edge costs along the path
- Data structures used
- OPEN: a list of nodes not explored yet
- CLOSE: a list of nodes explored already
- cost[node1, node2]: positive, edge cost, negative, no edge

- past_cost[node]: minimum cost found so far to reach node from the start node
- parent[node]: a link to the node preceding it in the shortest path found so far

A* Search Algorithm

- Initialization
- The matrix cost is constructed to encode the edges
- OPEN is the start node 1
- past_cost[1] = 0, past_cost[node] = infinity
- At each step
- Remove the first node from OPEN and call it current
- The node current is added to CLOSE
- If current in the goal set, finished
- Otherwise, for each neighbor of current that is not in CLOSE, compute tentative_past_cost
= past_cost[current] + cost[current,nbr]

A* Search Algorithm

- At each step (continued)
- If tentative_past_cost < past_cost[nbr] past_cost [nbr] = tentative_past_cost parent [nbr] is set to current

Compute estimated total cost for nbr

```
est_total_cost[nbr] \leftarrow past_cost[nbr] +
    heuristic_cost_to_go(nbr)
```

Add nbr to the correct position in OPEN (a sorted list)

A* Search Algorithm

```
Algorithm 10.1 A* search.
    OPEN }\leftarrow{1
    past_cost[1] \leftarrow0, past_cost[node] \leftarrow infinity for node }\in{2,\ldots,N
    while OPEN is not empty do
        current \leftarrow first node in OPEN, remove from OPEN
        add current to CLOSED
        if current is in the goal set then
            return SUCCESS and the path to current
        end if
        for each nbr of current not in CLOSED do
            tentative_past_cost \leftarrow past_cost[current]+cost[current,nbr]
            if tentative_past_cost < past_cost[nbr] then
            past_cost[nbr] \leftarrow tentative_past_cost
            parent[nbr] \leftarrow current
            put (or move) nbr in sorted list OPEN according to
                    est_total_cost[nbr] \leftarrow past_cost[nbr] +
                        heuristic_cost_to_go(nbr)
            end if
        end for
    end while
    return FAILURE
```


A* Search Algorithm

The empty circles represent the nodes in the open set, i.e., those that remain to be explored, and the filled ones are in the closed set. Color on each closed node indicates the distance from the goal: the greener, the closer. One can first see the A^{*} moving in a straight line in the direction of the goal, then when hitting the obstacle, it explores alternative routes through the nodes from the open set.

Grid Methods

- Discretize the configuration space into a grid
- If the C-space is n dimension, we use k grid points along each dimension
- The C-space is represented by k^{n} grid points
- We can apply the A* search algorithm for path planning with a C-space grid
- Define the neighbors of a grid point

4-connected

8-connected

- If only axis-aligned motions are used, the heuristic cost-togo should be based on Manhattan distance
- A node nbr is added to OPEN only if the step from current to nbr is collision-free

Grid Methods

- A* grid-based path planner

Grid Methods

- Grid-based path planning is only suitable for low-dimensional C-space
- Number of grid points $k^{n \substack{\text { n> np.power(32, 7.0) } \\ 34359738368.0}}$
- Multi-resolution grid representation
original cell

subdivision 1

subdivision 2

subdivision 3

original cell
subdivision 1
subdivision 2
subdivision 3

Grid Methods with Motion Constraints

- A robot may not be able to reach all the neighbors in a grid
- A car cannot move to the side
- motions for a fast-moving robot arm should be planned in the state space, not just in the C-space

Sample trajectories emanating from three initial states in the phase space of a dynamic system

Grid Methods with Motion Constraints

- Control for mobile robot (v, ω)
- v: forward-backward linear velocity
- w: angular velocity

unicycle

diff-drive robot

car

Grid Methods with Motion Constraints

```
Algorithm 10.2 Grid-based Dijkstra planner for a wheeled mobile robot
OPEN \(\leftarrow\left\{q_{\text {start }}\right\}\)
    past_cost \(\left[q_{\text {start }}\right] \leftarrow 0\)
    counter \(\leftarrow 1\)
    while OPEN is not empty and counter < MAXCOUNT do
        current \(\leftarrow\) first node in OPEN, remove from OPEN
        if current is in the goal set then
            return SUCCESS and the path to current
        end if
        if current is not in a previously occupied C-space grid cell then
        mark grid cell occupied
        counter \(\leftarrow\) counter +1
        for each control in the discrete control set do
            integrate control forward a short time \(\Delta t\) from current to \(q_{\text {new }}\)
            if the path to \(q_{\text {new }}\) is collision-free then
                compute cost of the path to \(q_{\text {new }}\)
                place \(q_{\text {new }}\) in OPEN, sorted by cost
                parent \(\left[q_{\text {new }}\right] \leftarrow\) current
            end if
        end for
    end if
    end while
    return FAILURE
```


Reversals are penalized

Grid Methods with Motion Constraints

- For a robot arm, we can plan directly in the state space (q, \dot{q})
- Let $\mathcal{A}(q, \dot{q})$ represent the set of accelerations that are feasible on the basis of the limited joint torques
- Discretization
- Apply a breath-first search in the state space
- To find a trajectory from a start state to a goal
- When exploration is made from (q, \dot{q})
- Use $\mathcal{A}(q, \dot{q})$ to find the control actions
- Integrate the control actions for Δt

Sampling Methods

- Grid-based methods delivers optimal solutions subject to the chosen discretization, but computationally expensive for high DOFs
- Sampling methods
- Randomly or deterministically sampling the C-space or state-space to find the motion plan
- Give up resolution-optimal solutions of a grid search, quickly find solutions in high-dimensional state space
- Most sampling methods are probabilistically complete: the probability of finding a solution, when one exists, approaches 100% as the number of samples goes to infinity

Rapidly exploring Random Trees (RRTs)

```
Algorithm 10.3 RRT algorithm.
    : initialize search tree \(T\) with \(x_{\text {start }}\)
    while \(T\) is less than the maximum tree size do
        \(x_{\text {samp }} \leftarrow\) sample from \(\mathcal{X}\)
        \(x_{\text {nearest }} \leftarrow\) nearest node in \(T\) to \(x_{\text {samp }}\)
        employ a local planner to find a motion from \(x_{\text {nearest }}\) to \(x_{\text {new }}\) in
            the direction of \(x_{\text {samp }}\)
        if the motion is collision-free then
        add \(x_{\text {new }}\) to \(T\) with an edge from \(x_{\text {nearest }}\) to \(x_{\text {new }}\)
        if \(x_{\text {new }}\) is in \(\mathcal{X}_{\text {goal }}\) then
            return SUCCESS and the motion to \(x_{\text {new }}\)
            end if
        end if
    end while
    return FAILURE
```

kinematic problems
$x=q$

- Line 3 , uniform sampling with a bias towards goal
- Line 4, Euclidean distance
- Line 5, use a small distance d from
$x_{\text {nearest }}$ on the straight line to $x_{\text {samp }}$
dynamic problems
$x=(q, \dot{q})$

Rapidly exploring Random Trees (RRTs)

A tree generated by applying a uniformly-distributed random motion from a randomly chosen tree node does not explore very far.

2000 nodes

A tree generated by the RRT algorithm

Rapidly exploring Random Trees (RRTs)

An animation of an RRT starting from iteration 0 to 10000
https://en.wikipedia.org/wiki/Rapidly-exploring random tree

Rapidly exploring Random Trees (RRTs)

- Bidirectional RRT
- Grows two trees, one forward from $x_{\text {start }}$, one backward from $x_{\text {goal }}$
- Alternating between growing the two trees $x_{\text {samp }}$
- Trying to connect the two trees by choosing $x_{\text {goal }}$ from the other tree
- Con: faster, can reach the exact goal
- Pro: the local planer might not be able to connect the two trees

Bidirectional RRT

https://github.com/Jakelnit/RRT

Rapidly exploring Random Trees (RRTs)

- RRT^{*}
- Continually rewires the search tree to ensure that it always encodes the shortest path from $x_{\text {start }}$ to each node in the tree
- To insert $x_{\text {new }}$ to the tree, consider $x \in \mathcal{X}_{\text {near }}$ sufficiently near to $x_{\text {new }}$
- Collision free
- Minimizes the total cost from $x_{\text {start }}$ to $x_{\text {new }}$
- Consider each $x \in \mathcal{X}_{\text {near }}$ to see whether it could be reached at lower cost by a motion through $x_{\text {new }}$, change the parent of x to $x_{\text {new }}$ (rewiring)

RRT vs. RRT*

RRT

RRT*

Probabilistic Roadmaps (PRMs)

- PRM uses sampling to build a roadmap representation of $\mathcal{C}_{\text {free }}$
- Connect a start node $q_{\text {start }}$ and a goal node $q_{\text {goal }}$ to the roadmap
- Search for a path, e.g., using A*

Probabilistic Roadmaps (PRMs)

- PRM uses sampling to build a roadmap representation of $\mathcal{C}_{\text {free }}$

Algorithm 10.4 PRM roadmap construction algorithm (undirected graph).
for $i=1, \ldots, N$ do
$q_{i} \leftarrow$ sample from $\mathcal{C}_{\text {free }}$
add q_{i} to R
end for
for $i=1, \ldots, N$ do
$\mathcal{N}\left(q_{i}\right) \leftarrow k$ closest neighbors of q_{i}
for each $q \in \mathcal{N}\left(q_{i}\right)$ do
if there is a collision-free local path from q to q_{i} and
there is not already an edge from q to q_{i} then
add an edge from q to q_{i} to the roadmap R
end if
end for

end for
return R

Nonlinear Optimization

- The general motion planning problem

Smoothing cost function
find $\quad u(t), q(t), T$

$$
\begin{aligned}
\operatorname{minimizing} & J(u(t), q(t), T) \\
\text { subject to } & \dot{x}(t)=f(x(t), u(t)), \\
& u(t) \in \mathcal{U} \\
& q(t) \in \mathcal{C}_{\text {free }} \\
& x(0)=x_{\text {start }} \\
& x(T)=x_{\text {goal }}
\end{aligned}
$$

$$
J=\frac{1}{2} \int_{0}^{T} \dot{u}^{\mathrm{T}}(t) \dot{u}(t) d t
$$

$\forall t \in[0, T]$,
$\forall t \in[0, T]$,
$\forall t \in[0, T]$,

Trajectory Optimization: CHOMP $f_{\text {motion }}(\xi)=f_{\text {obstacle }}(\xi)+\lambda f_{\text {smooth }}(\xi)$ $\xi=\left(q_{1}, \ldots, q_{T}\right)$ Atrajectory ofrobotiont conifiguations

Covariant Hamiltonian Optimization for Motion Planning (CHOMP): Ratliff-Zucker-Bagnell-Srinivasa, ICRA’09

OMG Planner: Trajectory Optimization and Grasp Selection

OMG Iter: 50

Modeling the goal set distribution
Wang-Xiang-Fox, RSS'20

Summary

- Grid methods
- A^{*}
- Sampling methods
- RRTs
- PRMs
- Nonlinear optimization

Further Reading

- Chapter 10 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.
- A* search: P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100-107, July 1968.
- PRMs. L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps for fast path planning in high dimensional conguration spaces. IEEE Transactions on Robotics and Automation, 12:566-580, 1996.
- RRT. S. M. LaValle and J. J. Kuner. Rapidly-exploring random trees: Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions. A. K. Peters, Natick, MA, 2001.

