2D Rigid-Body Motions and Rotation Matrices

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

Rigid-Body Motions

https://venturebeat.com/ai/mit-csail-refines-picker-robots-ability-to-handle-new-objects/

Vectors and Reference Frames

- A free vector: a geometric quantity with a length and a direction
- An arrow in \mathbb{R}^{n}, not rooted anywhere
- E.g., a linear velocity
- A free vector in a reference frame
- The base of the arrow at the origin
- Coordinates in the reference frame $v \in \mathbb{R}^{n}$
- Coordinates change with reference frames

- The underlying free vector does not change (coordinate free)

Points

- A point in space can be represented as a vector

Reference frame a

More about Reference Frames

- A reference frame can be attached anywhere
- Different reference frames result in different representations of the space and objects, but the underlying geometry is the same
- Always assume one stationary fixed frame or space frame $\{\mathrm{s}\}$
- E.g., a corner of a room
- Body frame $\{b\}$ is the stationary frame coincident with the bodyattached frame at any instance
- E.g., origin on the center of mass of the body

More about Reference Frames

- All frames in this course are stationary
- All frames in this course are right-handed

Rigid-Body Motions in the Plane

- Configuration of the planer body
- Position and orientation with respect to the fixed frame
- Body frame origin in the fixed frame

$$
\begin{aligned}
& p=p_{x} \hat{\mathrm{x}}_{\mathrm{s}}+p_{y} \hat{\mathrm{y}}_{\mathrm{s}} \\
& p=\left(p_{x}, p_{y}\right) \text { Vector form }
\end{aligned}
$$

- Rotation angle θ
- Directions of the body frame

$$
\begin{aligned}
\hat{\mathrm{x}}_{\mathrm{b}} & =\cos \theta \hat{\mathrm{x}}_{\mathrm{s}}+\sin \theta \hat{\mathrm{y}}_{\mathrm{s}} \\
\hat{\mathrm{y}}_{\mathrm{b}} & =-\sin \theta \hat{\mathrm{x}}_{\mathrm{s}}+\cos \theta \hat{\mathrm{y}}_{\mathrm{s}}
\end{aligned}
$$

Rigid-Body Motions in the Plane

- The two axes of the body frame in $\{s\}$

$$
P=\left[\begin{array}{ll}
\hat{\mathrm{x}}_{\mathrm{b}} & \hat{\mathrm{y}}_{\mathrm{b}}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \begin{aligned}
& \text { Write as } \\
& \text { column } \\
& \text { vectors }
\end{aligned}
$$

Rotation matrix 1DOF

$$
p=\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right] \text { Translation }
$$

$(P, p) \begin{aligned} & \text { specifies the orientation and } \\ & \text { position of }\{b\} \text { relative to }\{s\}\end{aligned}$

Rigid-Body Motions in the Plane

- $\{c\}$ in $\{s\}$

$$
r=\left[\begin{array}{l}
r_{x} \\
r_{y}
\end{array}\right], \quad R=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

- $\{c\}$ in $\{b\}$

$$
q=\left[\begin{array}{l}
q_{x} \\
q_{y}
\end{array}\right], \quad Q=\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right]
$$

- With $\{b\}$ in $\{\mathrm{s}\}$ and $\{\mathrm{c}\}$ in $\{b\}$
$R=P Q \quad$ (convert Q to the $\{\mathrm{s}\}$ frame)

$$
r=P q+p \quad(\text { convert } q \text { to the }\{\mathrm{s}\} \text { frame and vector-sum with } p)
$$

Rigid-Body Motions in the Plane

- Two frames attached to a rigid body $\{d\}\{c\}$
- Initially, $\{\mathrm{d}\}=\{\mathrm{s}\},\{\mathrm{c}\}$ in $\{\mathrm{s}\}$ by (R, r)
- Now, $\{\mathrm{d}\}$ move to $\{\mathrm{b}\} \quad(P, p)$ in $\{\mathrm{s}\}$
- Where dose $\{c\}$ end up?

$$
\begin{aligned}
R^{\prime} & =P R \\
r^{\prime} & =\operatorname{Pr}+p
\end{aligned}
$$

(P, p) is expressed in the same frame as (R, r) not viewed as a change of coordinates Known as a rigid-body motion

A Rotation Matrix-Vector Pair (P, p)

- Represent a configuration of a rigid body in $\{s\}$
- Change the reference frame

- Displace a vector or a frame

Rigid-Body Motions in the Plane

Rotation followed by translation

Rotation about a fixed point s by β
Screw motion three screw coordinates $\left(\beta, s_{x}, s_{y}\right)$

Rigid-Body in 3D

$$
p=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right] \quad \begin{aligned}
& \quad \text { Origin of the body frame } \\
& p=p_{1} \hat{\mathrm{x}}_{\mathrm{S}}+p_{2} \hat{\mathrm{y}}_{\mathrm{S}}+p_{3} \hat{\mathrm{z}}_{\mathrm{S}}
\end{aligned}
$$

- Axes of the body frame
$\hat{\mathrm{x}}_{\mathrm{b}}=r_{11} \hat{\mathrm{x}}_{\mathrm{s}}+r_{21} \hat{\mathrm{y}}_{\mathrm{s}}+r_{31} \hat{\mathrm{z}}_{\mathrm{s}}$,
$\hat{\mathrm{y}}_{\mathrm{b}}=r_{12} \hat{\mathrm{x}}_{\mathrm{s}}+r_{22} \hat{\mathrm{y}}_{\mathrm{s}}+r_{32} \hat{\mathrm{z}}_{\mathrm{s}}$,
$\hat{\mathrm{Z}}_{\mathrm{b}}=r_{13} \hat{\mathrm{x}}_{\mathrm{s}}+r_{23} \hat{\mathrm{y}}_{\mathrm{s}}+r_{33} \hat{\mathrm{z}}_{\mathrm{s}}$.

$$
\underset{\text { Rotation matrix }}{R=\left[\begin{array}{lll}
\hat{\mathrm{x}}_{\mathrm{b}} & \hat{\mathrm{y}}_{\mathrm{b}} & \hat{\mathrm{Z}}_{\mathrm{b}}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] .\left[\begin{array}{ll}
\\
r_{3}
\end{array}\right]}
$$

Write as column vectors

Rotation Matrix

- Unit norm condition

$$
\begin{aligned}
r_{11}^{2}+r_{21}^{2}+r_{31}^{2} & =1 \\
r_{12}^{2}+r_{22}^{2}+r_{32}^{2} & =1 \\
r_{13}^{2}+r_{23}^{2}+r_{33}^{2} & =1
\end{aligned}
$$

$$
R=\left[\begin{array}{lll}
\hat{\mathrm{x}}_{\mathrm{b}} & \hat{\mathrm{y}}_{\mathrm{b}} & \hat{\mathrm{z}}_{\mathrm{b}}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- Orthogonality condition $\quad \hat{\mathrm{x}}_{\mathrm{b}} \cdot \hat{\mathrm{y}}_{\mathrm{b}}=\hat{\mathrm{x}}_{\mathrm{b}} \cdot \hat{\mathrm{z}}_{\mathrm{b}}=\hat{\mathrm{y}}_{\mathrm{b}} \cdot \hat{\mathrm{z}}_{\mathrm{b}}=0$

$$
\begin{aligned}
& r_{11} r_{12}+r_{21} r_{22}+r_{31} r_{32}=0, \\
& r_{12} r_{13}+r_{22} r_{23}+r_{32} r_{33}=0 \\
& r_{11} r_{13}+r_{21} r_{23}+r_{31} r_{33}=0 .
\end{aligned}
$$

Rotation Matrix

- Orthogonal matrix $R^{\mathrm{T}} R=I$

$$
R=\left[\begin{array}{lll}
\hat{\mathrm{x}}_{\mathrm{b}} & \hat{\mathrm{y}}_{\mathrm{b}} & \hat{\mathrm{z}}_{\mathrm{b}}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- Left-handed $\hat{\mathrm{x}}_{\mathrm{b}} \times \hat{\mathrm{y}}_{\mathrm{b}}=-\hat{\mathrm{z}}_{\mathrm{b}}$

Determinant of a 3×3 matrix M

$$
\operatorname{det} M=a^{\mathrm{T}}(b \times c)=c^{\mathrm{T}}(a \times b)=b^{\mathrm{T}}(c \times a)
$$

det $R=+1$ does not change the number of independent continuous variables
$\operatorname{det} R=1 \quad$ Right-handed frames only

SO(n): Special Orthogonal Group

- $\mathrm{SO}(\mathrm{n})$: Space of rotation matrices in \mathbb{R}^{n}

$$
S O(n)=\left\{R \in \mathbb{R}^{n \times n}: R R^{T}=I, \operatorname{det}(R)=1\right\}
$$

- SO(3): space of 3D rotation matrices
- Group is a set G, with an operation \bullet, satisfying the following axioms:
- Closure: $a \in G, b \in G \Rightarrow a \cdot b \in G$
- Associativity: $(a \cdot b) \cdot c=a \cdot(b \cdot c), \forall a, b, c \in G$
- Identity element: $\exists e \in G, e \cdot a=a, \forall a \in G$
- Inverse element: $\forall a \in G, \exists b \in G, a \cdot b=b \cdot a=e$

Properties of Rotation Matrices

- Closure $\quad R_{1} R_{2}$
- Associativity $\left(R_{1} R_{2}\right) R_{3}=R_{1}\left(R_{2} R_{3}\right)$
- Identity element: identity matrix I
- Inverse element $R^{-1}=R^{\mathrm{T}}$
- Not commutative $R_{1} R_{2} \neq R_{2} R_{1}$

Uses of Rotation Matrices

- Represent a rotation
- Change the reference frame
- Rotate a vector or a frame

Representing a Rotation

- $R_{S C}$ frame $\{\mathrm{c}\}$ relative to frame $\{\mathrm{s}\}$

$$
R_{a c} R_{c a}=I \quad R_{a c}=R_{c a}^{-1} \quad R_{a c}=R_{c a}^{\mathrm{T}}
$$

Changing the Refence Frame

- Orientation of $\{\mathrm{b}\}$ in $\{\mathrm{a}\} \quad R_{a b}$
- Orientation of $\{\mathrm{c}\}$ in $\{\mathrm{b}\} \quad R_{b c}$
- Orientation of $\{c\}$ in $\{a\}$

$$
R_{a c}=R_{a b} R_{b c}
$$

$=$ change_reference_frame_from_\{b\}_to_\{a\} $\left(R_{b c}\right)$

- Subscript cancel rule

$$
R_{a b} R_{b c}=R_{a \phi} R_{\phi c}=R_{a c} \quad R_{a b} p_{b}=R_{a b} p_{\phi}=p_{a}
$$

Rotating a Vector or a Frame

- Rotate frame $\{c\}$ about a unit axis $\hat{\omega}$ by θ to get frame $\left\{c^{\prime}\right\}$

$$
R=R_{s c^{\prime}}
$$

- Rotation operation

$$
R=\operatorname{Rot}(\hat{\omega}, \theta)
$$

Rotating a Vector or a Frame

$$
\begin{aligned}
& \operatorname{Rot}(\hat{\mathrm{x}}, \theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad \operatorname{Rot}(\hat{\mathrm{y}}, \theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& \operatorname{Rot}(\hat{\mathrm{z}}, \theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Rotating a Vector or a Frame

$$
\hat{\omega}=\left(\hat{\omega}_{1}, \hat{\omega}_{2}, \hat{\omega}_{3}\right)
$$

$\operatorname{Rot}(\hat{\omega}, \theta)=$

$$
\left[\begin{array}{ccc}
c_{\theta}+\hat{\omega}_{1}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)-\hat{\omega}_{3} s_{\theta} & \hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{2} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)+\hat{\omega}_{3} s_{\theta} & c_{\theta}+\hat{\omega}_{2}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{1} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{2} s_{\theta} & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{1} s_{\theta} & c_{\theta}+\hat{\omega}_{3}^{2}\left(1-c_{\theta}\right)
\end{array}\right]
$$

$\mathrm{s}_{\theta}=\sin \theta \quad \mathrm{c}_{\theta}=\cos \theta$
$\operatorname{Rot}(\hat{\omega}, \theta)=\operatorname{Rot}(-\hat{\omega},-\theta)$

Rotating a Vector or a Frame

- $\{\mathrm{b}\}$ in $\{\mathrm{s}\} R_{s b}$
- Rotate $\{b\}$ with
$\operatorname{Rot}(\hat{\omega}, \theta)$
$\hat{\omega}$ represented in $\{s\}$ or $\{b\}$?

$$
\begin{aligned}
& R_{s b^{\prime}}=\text { rotate_by_ } R_{-} \text {in_ }_{-}\{\mathrm{s}\} \text { _frame }\left(R_{s b}\right)=R R_{s b} \\
& R_{s b^{\prime \prime}}=\text { rotate_by_ } R_{_} \text {in_}_{-}\{\mathrm{b}\} _ \text {_frame }\left(R_{s b}\right)=R_{s b} R
\end{aligned}
$$

To rotate a vector $v^{\prime}=R v$

Summary

- Reference frames
- Rigid-body motions in 2D
- Rigid-body motions in 3D
- Rotation matrices
- Uses of Rotation Matrices
- Represent a rotation
- Change the reference frame
- Rotate a vector or a frame

Further Reading

- Chapter 3 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017
- Quaternion and Rotations, Yan-Bin Jia, https://graphics.stanford.edu/courses/cs348a-17winter/Papers/quaternion.pdf
- Introduction to Robotics, Prof. Wei Zhang, OSU, Lecture 3, Rotational Motion, http://www2.ece.ohiostate.edu/~zhang/RoboticsClass/index.html

