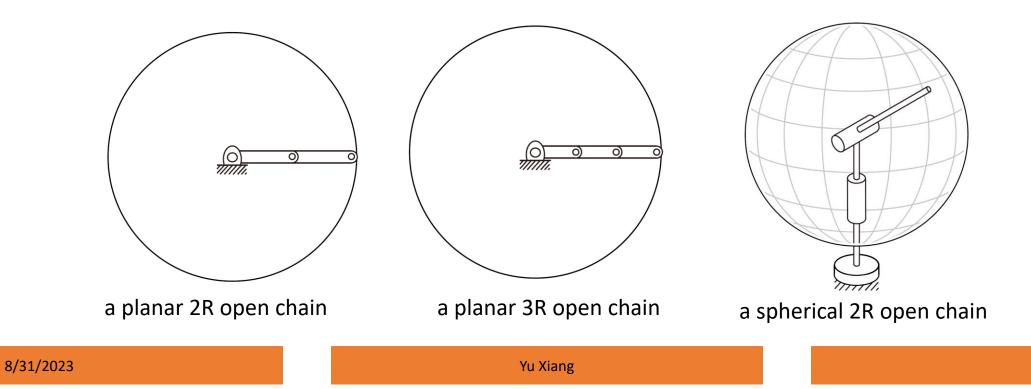

Task Space, Workspace and Introduction to ROS

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

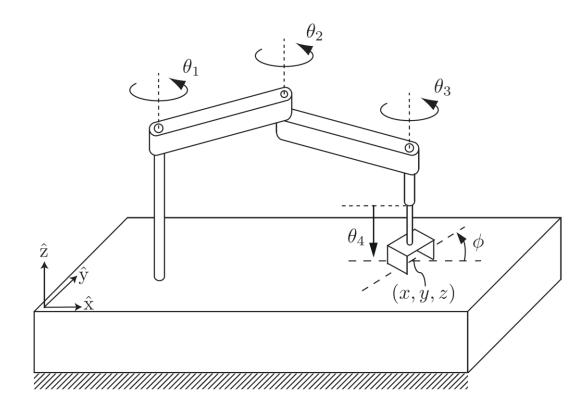
NIV

Configuration Space of a Robot

- The configuration of a robot is a complete specification of the position of every point of the robot.
- The minimum number n of real-valued coordinates needed to represent the configuration is the number of degrees of freedom (DOF) of the robot.
- The n-dimensional space containing all possible configurations of the robot is called the configuration space (C-space).
- The configuration of a robot is represented by a point in its C-space.

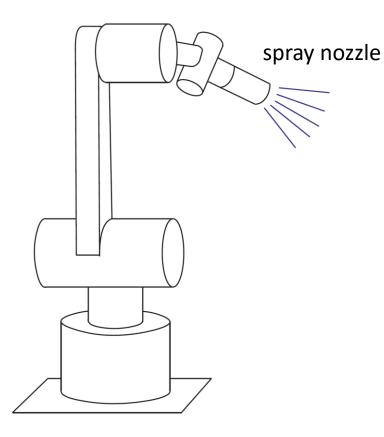

- 4 revolute joints
- 4 DOFs

Task Space


- The task space is a space in which the robot's task can be naturally expressed
- Task examples
 - Draw on a piece of paper: \mathbb{R}^2
 - Manipulate a rigid body: C-space of the rigid body
- Task space is driven by the task, independently of the robot

Workspace

- The workspace is a specification of the configurations that the endeffector of the robot can reach.
- Depends on the robot structure, independent of the task



SCARA Robot

- End-effector configuration
 - (x, y, z, ϕ)
- Task space $\mathbb{R}^3 imes S^1$
- Workspace
 - Reachable (x,y,z,ϕ)

A 6R Robot

A spray-painting robot

• End-effector configuration

$$(x, y, z) \quad (\theta, \phi)$$

Cartesian position of the nozzle

Spherical coordinates to describe the direction in which the nozzle is pointing

• Task space \mathbb{R}^3

$$^3 \times S^2$$

- Workspace
 - Reachable

 $(x, y, z) \quad (\theta, \phi)$

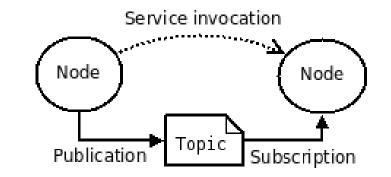
https://www.rnaautomation.com/case-study/robotic-spray-booth/

Robot Programming

- Sensing
 - How to receive data from sensors on the robot?
 - RGB image, depth image, lidar scan, odometry, joint state
- Computation
 - Use the sensor data for computation
 - Object recognition, motion planning, compute control command, etc.
- Control
 - How to send the control command to the robot?

Robot Operating System (ROS)

- ROS is a set of software libraries and tools that can be used to build robot applications
 - Drivers, algorithms, developer tools, etc.
- Goal of ROS: support code reuse in robotics research and development
- Operating systems: Unix-based platforms (Ubuntu)

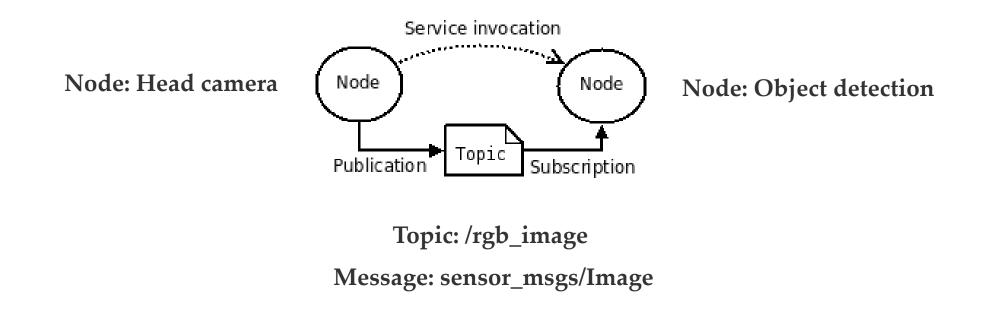

https://www.ros.org/ https://wiki.ros.org/

Robot Operating System (ROS)

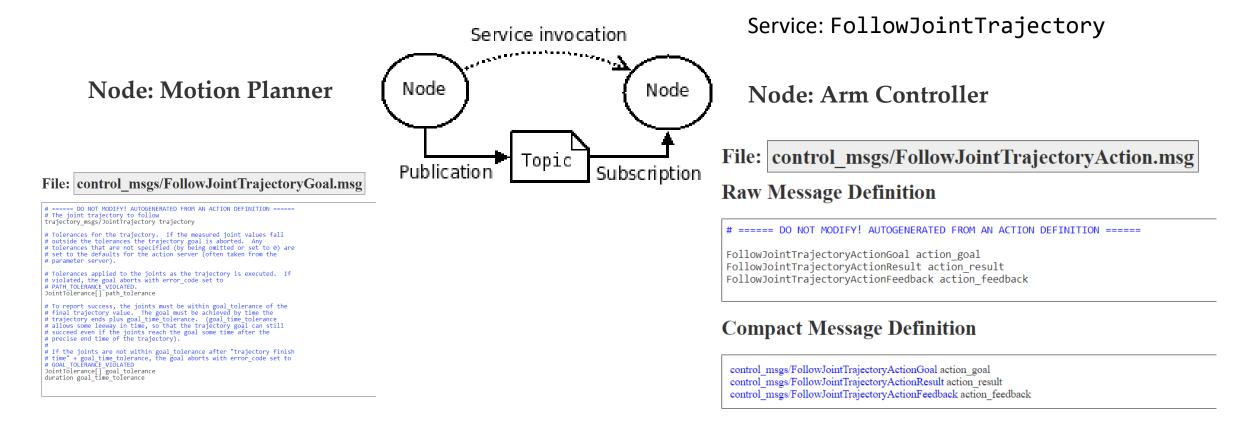
Yu Xiang

- The computation graph is the peer-to-peer network of ROS processes that are processing data together
- Computation graph concepts
 - Nodes: processes that perform computation
 - ROS Master: provides name registration and lookup, nodes can find each other via ROS master
 - Messages: nodes communicate by passing messages, a data structure with type fields (integer, floating, arrays, etc.)

ROS Message Example


File: sensor_msgs/Image.msg

Raw Message Definition


<pre># This message contains an uncompressed image # (0, 0) is at top-left corner of image</pre>		File: std_msgs/Header.msg
# Header header	<pre># Header timestamp should be acquisition time of image # Header frame_id should be optical frame of camera # origin of frame should be optical center of camera # +x should point to the right in the image # +y should point down in the image # +z should point into to plane of the image # If the frame_id here and the frame_id of the CameraInfo # message associated with the image conflict # the behavior is undefined</pre>	Raw Message Definition
		<pre># Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library</pre>
uint32 height uint32 width	# image height, that is, number of rows # image width, that is, number of columns	
<pre># The legal values for encoding are in file src/image_encodings.cpp # If you want to standardize a new string format, join # ros-users@lists.sourceforge.net and send an email proposing a new encoding.</pre>		<pre>time stamp #Frame this data is associated with string frame_id</pre>
string encoding	# Encoding of pixels channel meaning, ordering, size # taken from the list of strings in include/sensor_msgs/image_encodings.h	
uint8 is_bigendian uint32 step uint8[] data	# is this data bigendian? # Full row length in bytes # actual matrix data, size is (step * rows)	

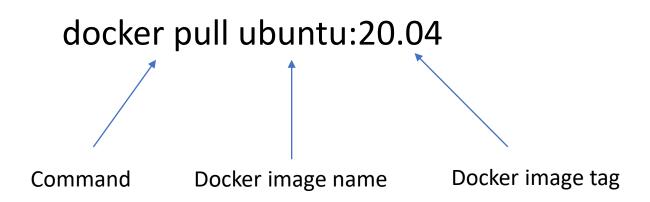
<u>std_msgs</u>/Header Message

• Topics: a node publishes messages to a topic. The topic is the name to identify the content of the message

• Service: request and reply interactions

Yu Xiang

- ROS bags
 - A format for saving and playing back ROS message data
 - We can save sensor data into a ros bag, and use it for development


rosbag record --duration=30 --output-name=/tmp/mybagfile.bag \
 /topic1 /topic2 /topic3

Docker

- An open platform that enables you to separate your applications from your infrastructure
- Container
 - A lightweight environment that contains everything to run an application
 - A container is a runnable instance of an image
- Image
 - A read-only template with instructions for creating a docker container

Ubuntu in Docker

• Download the ubuntu docker image https://hub.docker.com/ /ubuntu

Docker

docker run -i -t ubuntu:20.04 /bin/bash

- Run an **ubuntu container**
- You need to have an ubuntu image locally, if not, the command will pull an ubuntu image as by docker pull ubuntu
- Docker creates a new container as though you had run docker container create
- Docker starts the container and execute /bin/bash
- -i, -t the container is running interactively and attached to your terminal
- When exit, the container stops but is not removed

- Install Docker Desktop <u>https://docs.docker.com/get-docker/</u>
- Start the Docker Desktop
- Ubuntu images <u>https://hub.docker.com/ /ubuntu</u>
- Run command "docker run –i –t ubuntu:20.04 /bin/bash"
- No need to use sudo in docker, do an "apt update" first
- Install ROS <u>http://wiki.ros.org/noetic/Installation/Ubuntu</u>
- Install terminator

<u>https://manpages.ubuntu.com/manpages/bionic/en/man1/terminat</u> <u>or.1.html</u>

- Install X server
 - Windows: VcXsrv Windows X Server https://sourceforge.net/projects/vcxsrv/
 - Mac: Xquartz <u>https://www.xquartz.org/</u>
- Start the X server
- Check IP address
- In Ubuntu terminal

Export DISPLAY=my_ip:0.0

Extra settings ×	PS C:\Users\xyfud> ipconfig
Extra settings	Windows IP Configuration
	Wireless LAN adapter Local Area Connection* 1:
Clipboard Start the integrated clipboard manager Primary Selection	Media State : Media disconnected Connection-specific DNS Suffix . : Wireless LAN adapter Local Area Connection* 2:
Also map the PRIMARY selection to the windows clipboard. Native opengl Use the native windows opengl library (wgl). Make sure to export the	Media State Media disconnected Connection-specific DNS Suffix . :
LIBGL_ALWAYS_INDIRECT environment variable. Disable access control Use this when you want vcxsrv to accept connections from all clients.	Wireless LAN adapter Wi-Fi:
Additional parameters for VcXsrv	Connection-specific DNS Suffix .: attlocal.net IPv6 Address 2600:1700:4031:7a10::45 IPv6 Address 2600:1700:4031:7a10:994d:7d8:95e8:bb80 Temporary IPv6 Address 2600:1700:4031:7a10:e1e6:11df:c1f3:9270
< Back Next > Cancel	Link-local IPv6 Address : fe80::994d:7d8:95e8:bb80%20 IPv4 Address : 192.168.1.206 Subnet Mask : 255.255.255.0 Default Gateway : fe80::8e5a:25ff:fe9c:3890%20 192.168.1.254

https://medium.com/@potatowagon/how-to-use-gui-apps-in-linux-docker-container-from-windows-host-485d3e1c64a3

- Test ROS installation
- In one terminator terminal, start roscore
 - source /opt/ros/noetic/setup.bash
 - roscore
- In another terminator terminal, start rviz
 - source /opt/ros/noetic/setup.bash
 - rosrun rviz rviz

Commit Your Docker Image

- After you exit the docker container
- Run the command "docker container list -a" to see all the containers. Find the container ID of the latest one
- Run the command "docker container commit <CONTAINER_ID>"
- Run the command "docker image list -a" to see the latest image ID
- Run the command "docker image tag <IMAGE_ID> TAG". Give a name to this image such as "ubuntu:ros"

- After install all needed packages, exit
- docker container commit CONTAINER_ID
- docker image tag <IMAGE_ID> TAG
- Useful commands
 - docker container list –a
 - docker image list -a
- The new tagged image will have all the installed packages

Summary

- Task space
- Workspace
- ROS
- Docker

Further Reading

- Chapter 2 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017 http://hades.mech.northwestern.edu/images/7/7f/MR.pdf
- ROS wiki <u>https://wiki.ros.org/</u>
- Docker document https://docs.docker.com/get-started/overview/