Target Driven Visual Navigation in Outdoor Scenes

Group 18

Jerry Xu -

Sai Charan Kotra

Satya Sai Bharadwaj Manthri

Vishnu Vardhan Reddy Kanamata Reddy

Abstract

- Target-driven visual navigation in outdoor environments, making an agent utilize vision to navigate through the environment in order to achieve a user-specified objectives has become one of the major difficulties in robotics in recent years.
- We present a novel outdoor environment simulated in the Gazebo framework and RL (Reinforcement learning)
- We show that we were able to replicate real-world outdoor scenarios and successfully conducted experiments in which we were able to make the robot navigate and interact with the objects.
- This creates innovative application possibilities where intelligent agents could pick up on information from their environment and adapt to a variety of settings with little assistance from humans.

Target Driven Visual Navigation

Present Camera View

Target Not Found

Navigate and Check

Target Found STOP

Main Goals

- Implement Target Driven Visual Navigation Concept
- Make Robot Work in Outdoor Environment With Target Driven Visual Navigation
- Test Robot for the following:
 - Changes in Lighting
 - Changes in Environment

Technologies and Hardware Specifications

ROS

- Robot Operating System (ROS) is a set of software libraries and tools that help you build robot applications
- It provides hardware abstraction, low-level device control, message-passing between processes, and package management.

Gazebo

- Gazebo is an open-source 3D robotics simulator.
- It integrated the ODE physics engine, OpenGL rendering, and support code for sensor simulation and actuator control.
- Windows

Environment

Concept of Working

- We are using Model-free Reinforcement learning
- States = { Target Found: 1, Target Not Found: 0}
 - state also includes image that the robot sees (aka a rgb image)

Reward

- Action = { Left, Straight, Right }
- Reward Policy :
 - Collision => -100
 - Target Found => +100
- On collision, Episodes End
- Episodes 50
- Action per Episode 1000

Important points of Implementation

Each action has a special designated moves for itself:

- Move Ahead Moves 1 unit towards front.
- Left and Right Turn and Move 0.5 unit front.

Learning is done by the following formula:

```
G [action] + = alpha (target - g[action])
```

Target + = reward

Collision and Target Detection

- Target Detection:
 - Present view of head camera is taken with the help of a ROS topic
 "/head_camera/rgb/image_raw" and CvBridge
 - Comparison of target and present view is done with the help of following scores:
 - Mean Square Error (MSE)
 - Structural Similarity Index Measure (SSIM)
- Collision Detection:
 - For moving the robot, we developed a code. While developing itself, we created cases to detect collisions by the following measures.

DEMO (Output)

DEMO (Expected output)

Expected output matches our output as seen in the previous slide - So, the navigation is successful

Thank You