

• Yulang Wu, Yifan Lin, Xuanchen Zhou

Outline

- Introduction
- Method
- Synthetic examples
- Discussion and Conclusion

1. Introduction

Indoor/Household robots

- Applications:
 - Cleaning
 - Personal assistant
 - Entertainment
 - Security
 - Educational

Cleaning Robots

Roomba vacuum cleaner, the LG Hom-Bot Turbo+

HOBOT-268 window cleaning robot

Assistant Robots

Entertainment robots

 Robotic Pets: These robots are designed to mimic the appearance and behaviors of real animals, such as dogs, cats, or birds.

Our Purpose

 Given a known scene (map), a robot should efficiently and correctly detect and locate the sound source and then move to the source location.

2. Method

Audio-embodied navigation

Step 2: Find shortest path Step 1: Estimate source location from recorded data Source **CNN Prediction** location Recorded **CNN** data at different 1 frequency Turtlebot location Mask

2.1 Source location estimation

2) Training data collection

2.1 Source location estimation

3) Features extracted from the recorded data

- Frequency-domain acoustic data
- Illumination map

Frequency-domain data $d(\vec{x}, \omega) = FFT(d(\vec{x}, t))$

Illumination (energy) of the wavefield $\int_{0}^{T} [d(\vec{x},t)]^{2} dt$

2.1 Source location estimation

2.1 Source location estimation

The source locations in both the training (the red squares) and test (the orange squares) dataset and the robot's location (the light blue square)

□ A* search algorithm

find the shortest path from robot position to target position

A* algorithm is a pathfinding algorithm that uses a heuristic function to find the optimal path from a start node to a goal node.

F(x) = d(x) + h(x)d(x): current cost h(x): estimated remaining cost Euler/Manhattan distance

A* search algorithm Comparison of normal BFS and A*

Implement it in iGibson

Get a list of coordinates through A* Process the result to get the action parameters Constantly adjust the parameters to reach the target

Implement it in iGibson

4. Discussion and Conclusion

• Limitations and requirements:

- Map is assumed to be known
- Require random sampling for CNN training
- Require two acoustic signals sent from the target at different time to get the time window
- Require unchanged audio sequence

• Potential applications:

- Hide-and-seek
- Emergency call
- Private assistant

Thank you!