Audio-embodied Indoor navigation

- Yulang Wu, Yifan Lin, Xuanchen Zhou
Outline

- Introduction
- Method
- Synthetic examples
- Discussion and Conclusion
1. Introduction
Indoor/Household robots

• Applications:
 • Cleaning
 • Personal assistant
 • Entertainment
 • Security
 • Educational
Cleaning Robots

Roomba vacuum cleaner, the LG Hom-Bot Turbo+

HOBOT-268 window cleaning robot
Assistant Robots

Amazon's Echo

Google Home
Entertainment robots

- Robotic Pets: These robots are designed to mimic the appearance and behaviors of real animals, such as dogs, cats, or birds.
Our Purpose

• Given a known scene (map), a robot should efficiently and correctly detect and locate the sound source and then move to the source location.
2. Method

Audio-embodied navigation

Step 1: Estimate source location from recorded data

Step 2: Find shortest path
2.1 Source location estimation

1) Robot and scene

Turtlebot

25 microphones
Assumed to be placed on the top

Turtlebot randomly walks on the scene
2.1 Source location estimation

2) Training data collection
2.1 Source location estimation

3) Features extracted from the recorded data
 • Frequency-domain acoustic data
 • Illumination map
Frequency-domain data $d(\tilde{x}, \omega) = FFT(d(\tilde{x}, t))$
Illumination (energy) of the wavefield $\int_{0}^{T} [d(\hat{x}, t)]^2 dt$
2.1 Source location estimation

4) CNN training

Wavefields at different frequency

Pointwise multiplication

Mask

Turtlebot location

CNN Training

Labeled source location

Classification training
2.1 Source location estimation

5) CNN prediction

Recorded data at different frequency

CNN Prediction

Source location

Turtlebot location

Mask
The source locations in both the training (the red squares) and test (the orange squares) dataset and the robot’s location (the light blue square)
The training (the left panel) and test (the right panel) errors

Training dataset

Test dataset

$R^2 = 1.000000$

$R^2 = 0.001274$
2.2 Path planning

- **A* search algorithm**

 find the shortest path from robot position to target position

A* algorithm is a pathfinding algorithm that uses a heuristic function to find the optimal path from a start node to a goal node.

\[F(x) = d(x) + h(x) \]

- \(d(x) \): current cost
- \(h(x) \): estimated remaining cost

Euler/Manhattan distance
2.2 Path planning

- **A* search algorithm**

Comparison of normal BFS and A*
2.2 Path planning

- Implement it in iGibson

1. Get a list of coordinates through A*
2. Process the result to get the action parameters
3. Constantly adjust the parameters to reach the target
2.2 Path planning

- Implement it in iGibson

\[\text{action} = (\text{distance}, \text{radian}) \]

\[(x_1, y_1) \rightarrow (x_2, y_2)\]

\[\text{env.step()}\]
4. Discussion and Conclusion

• Limitations and requirements:
 • Map is assumed to be known
 • Require random sampling for CNN training
 • Require two acoustic signals sent from the target at different time to get the time window
 • Require unchanged audio sequence

• Potential applications:
 • Hide-and-seek
 • Emergency call
 • Private assistant
Thank you!