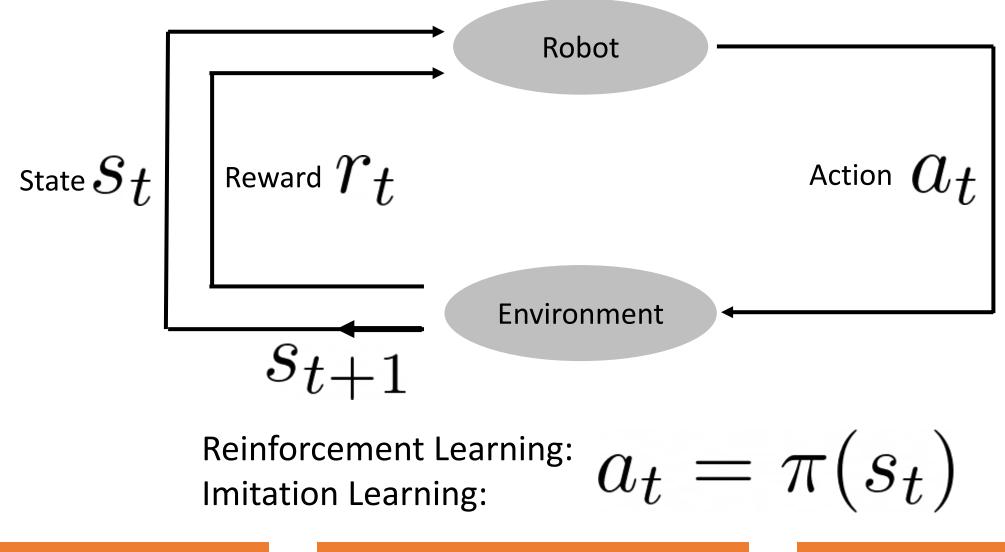
Reinforcement Learning: Algorithms

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

NIN

Reinforcement Learning



• Gradient ascent

• Maximize expected return $J(\pi_{\theta}) = \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} [R(\tau)]$

$$R(\tau) = \sum_{t=0}^{T} r_t$$

Policy gradient

$$egin{split} & T_{ heta}J(\pi_{ heta}) =
abla_{ heta} \mathop{\mathrm{E}}_{ au \sim \pi_{ heta}} \left[R(au)
ight] \ &=
abla_{ heta} \int_{ au} P(au| heta) R(au) \ &= \int_{ au}
abla_{ heta} P(au| heta) R(au) \ \end{split}$$

Probability of a Trajectory

$$P(\tau|\theta) = \rho_0(s_0) \prod_{t=0}^T P(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t)$$

 ∇

 $\theta_{k+1} = \theta_k + \alpha \, \nabla_\theta J(\pi_\theta)|_{\theta_k}$

• The Log-Derivative Trick $\nabla_{\theta} P(\tau|\theta) = P(\tau|\theta) \nabla_{\theta} \log P(\tau|\theta)$

$$\log P(\tau|\theta) = \log \rho_0(s_0) + \sum_{t=0}^T \left(\log P(s_{t+1}|s_t, a_t) + \log \pi_\theta(a_t|s_t) \right)$$

$$\nabla_{\theta} \log P(\tau|\theta) = \underline{\nabla_{\theta} \log \rho_0(s_0)} + \sum_{t=0}^{T} \left(\underline{\nabla_{\theta} \log P(s_{t+1}|s_t, a_t)} + \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \right)$$
$$= \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t).$$

$$\begin{aligned} \nabla_{\theta} J(\pi_{\theta}) &= \nabla_{\theta} \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[R(\tau) \right] \\ &= \nabla_{\theta} \int_{\tau} P(\tau | \theta) R(\tau) & \text{Expand expectation} \\ &= \int_{\tau} \nabla_{\theta} P(\tau | \theta) R(\tau) & \text{Bring gradient under integral} \\ &= \int_{\tau} P(\tau | \theta) \nabla_{\theta} \log P(\tau | \theta) R(\tau) & \text{Log-derivative trick} \\ &= \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[\nabla_{\theta} \log P(\tau | \theta) R(\tau) \right] & \text{Return to expectation form} \end{aligned}$$

$$\nabla_{\theta} J(\pi_{\theta}) = \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau) \right] \quad \text{Expression for grad-log-prob}$$

• Collect a set of trajectories using the policy π_{θ}

$$\mathcal{D} = \{\tau_i\}_{i=1,\dots,N}$$

• Estimate policy gradient $\hat{g} = \frac{1}{|\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{t=0}^{I} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau)$

Categorical policy for discrete actions

$$\log \pi_{\theta}(a|s) = \log \left[P_{\theta}(s) \right]_{a}$$

Diagonal Gaussian policy

$$\log \pi_{\theta}(a|s) = -\frac{1}{2} \left(\sum_{i=1}^{k} \left(\frac{(a_i - \mu_i)^2}{\sigma_i^2} + 2\log \sigma_i \right) + k\log 2\pi \right)$$

$$\nabla_{\theta} J(\pi_{\theta}) = \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau) \right] \qquad R(\tau) = \sum_{t=0}^{T} r_t$$

Agents should really only reinforce actions on the basis of their consequences.

$$\begin{split} \nabla_{\theta} J(\pi_{\theta}) &= \mathop{\mathbf{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) \right] \\ \hat{R}_t &\doteq \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) \quad \text{reward-to-go} \end{split}$$

Vanilla Policy Gradient

- Key idea: push up the probabilities of actions that lead to higher return, and push down probabilities of actions that lead to lower return
- The expected finite-horizon undiscounted return of the policy $J(\pi_{\theta})$

$$\nabla_{\theta} J(\pi_{\theta}) = \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) A^{\pi_{\theta}}(s_t, a_t) \right]$$

Advantage function $A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$

Stochastic gradient ascent $\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\pi_{\theta_k})$

Vanilla Policy Gradient

Algorithm 1 Vanilla Policy Gradient Algorithm

1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0

2: for k = 0, 1, 2, ... do

- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 4: Compute rewards-to-go \hat{R}_t .
- 5: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 6: Estimate policy gradient as

$$\hat{g}_k = \frac{1}{|\mathcal{D}_k|} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T |\nabla_\theta \log \pi_\theta(a_t|s_t)|_{\theta_k} \hat{A}_t.$$

7: Compute policy update, either using standard gradient ascent,

$$\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k,$$

or via another gradient ascent algorithm like Adam.

8: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm. 9: end for

reward-to-go

$$\hat{R}_t \doteq \sum_{t'=t}^T R(s_{t'}, a_{t'}, s_{t'+1})$$

Advantage function

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

= $r + V^{\pi}(s') - V^{\pi}(s)$

11/16/2022

Trust Region Policy Optimization (TRPO)

s.t. $\bar{D}_{KL}(\theta || \theta_k) \leq \delta$

• TRPO update $\theta_{k+1} = \arg \max_{\theta} \mathcal{L}(\theta_k, \theta)$

taking the largest step possible to improve performance

 $\mathcal{L}(\theta_k, \theta) = \mathop{\mathrm{E}}_{s, a \sim \pi_{\theta_k}} \begin{bmatrix} \frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a) \end{bmatrix}$ A measure of new the policy performs related to the old policy • surrogate advantage

A measure of how the

• KL-divergence

$$\bar{D}_{KL}(\theta||\theta_k) = \mathop{\mathrm{E}}_{s \sim \pi_{\theta_k}} \left[D_{KL} \left(\pi_{\theta}(\cdot|s) || \pi_{\theta_k}(\cdot|s) \right) \right]$$

Approximation

$$\mathcal{L}(\theta_k, \theta) \approx g^T(\theta - \theta_k) \qquad \theta_{k+1} = \arg\max_{\theta} g^T(\theta - \theta_k) \\ \bar{D}_{KL}(\theta || \theta_k) \approx \frac{1}{2} (\theta - \theta_k)^T H(\theta - \theta_k) \qquad \text{s.t.} \ \frac{1}{2} (\theta - \theta_k)^T H(\theta - \theta_k) \le \delta. \qquad \theta_{k+1} = \theta_k + \sqrt{\frac{2\delta}{g^T H^{-1}g}} H^{-1}g^{-1$$

Proximal Policy Optimization (PPO)

• **PPO-clip updates** $\theta_{k+1} = \arg \max_{\theta} \mathop{\mathrm{E}}_{s,a \sim \pi_{\theta_k}} [L(s, a, \theta_k, \theta)]$

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), \quad \operatorname{clip}\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, 1 - \epsilon, 1 + \epsilon\right) A^{\pi_{\theta_k}}(s, a)\right)$$

Avoid stepping so far that we accidentally cause performance collapse

PPO methods are significantly simpler to implement, and empirically seem to perform at least as well as TRPO

• A simpler version

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), \quad g(\epsilon, A^{\pi_{\theta_k}}(s, a))\right)$$
$$g(\epsilon, A) = \begin{cases} (1+\epsilon)A & A \ge 0\\ (1-\epsilon)A & A < 0. \end{cases}$$

Proximal Policy Optimization (PPO)

Algorithm 1 PPO-Clip

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: for k = 0, 1, 2, ... do
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 4: Compute rewards-to-go \hat{R}_t .
- 5: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 6: Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right),$$

typically via stochastic gradient ascent with Adam.

7: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm. 8: end for

11/16/2022

- DDPG currently learns a Q-function and a policy
 - Uses off-policy data and the Bellman equation to learn the Q-function
 - Uses the Q-function to learn the policy

• Q-learning
$$Q^*(s, a) = \mathop{\mathrm{E}}_{s' \sim P} \left[r(s, a) + \gamma \max_{a'} Q^*(s', a') \right]$$

Approximator $Q_{\phi}(s, a)$ Collect a set of transitions (s, a, r, s', d)

mean-squared Bellman error (MSBE)

$$E(\phi, \mathcal{D}) = \mathop{\mathrm{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left[\left(Q_{\phi}(s, a) - \left(r + \gamma (1 - d) \max_{a'} Q_{\phi}(s', a') \right) \right)^2 \right]$$

 $\max_a Q(s, a) \approx Q(s, \mu(s))$ a policy $\mu(s)$

- Trick one: replay buffers
 - Large enough to contain a wide range of experiences
- Trick two: target networks
 - The term is called target $r + \gamma(1-d) \max_{a'} Q_{\phi}(s',a')$
 - The target depends on the same parameters ϕ_i but with a time delay
 - Target network $\phi_{
 m targ}$

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho) \phi$$

- Target policy network $\mu_{ heta_{ ext{targ}}}$

• Q-learning in DDPG

$$L(\phi, \mathcal{D}) = \mathop{\mathrm{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left[\left(Q_{\phi}(s, a) - \left(r + \gamma (1 - d) Q_{\phi_{\mathrm{targ}}}(s', \mu_{\theta_{\mathrm{targ}}}(s')) \right) \right)^2 \right]$$

• Policy learning in DDPG

$$\max_{\theta} \mathop{\mathrm{E}}_{s \sim \mathcal{D}} \left[Q_{\phi}(s, \mu_{\theta}(s)) \right]$$

Algorithm 1 Deep Deterministic Policy Gradient
1: Input: initial policy parameters θ , Q-function parameters ϕ , empty replay buffer \mathcal{D}
2: Set target parameters equal to main parameters $\theta_{targ} \leftarrow \theta, \phi_{targ} \leftarrow \phi$
3: repeat
4: Observe state s and select action $a = \operatorname{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$, where $\epsilon \sim \mathcal{N}$
5: Execute a in the environment
6: Observe next state s' , reward r , and done signal d to indicate whether s' is terminal
7: Store (s, a, r, s', d) in replay buffer \mathcal{D}
8: If s' is terminal, reset environment state.
9: if it's time to update then
10: for however many updates do
11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from \mathcal{D}
12: Compute targets
$y(r, s', d) = r + \gamma(1 - d)Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))$
12. Undete O function by one stop of gradient descent using

13: Update Q-function by one step of gradient descent using

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$$

14: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))$$

15: Update target networks with

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho) \phi$$
$$\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho) \theta$$

16: end for
17: end if
18: until convergence

11/16/2022

Twin Delayed DDPG (TD3)

- Trick one: clipped double-Q learning
 - TD3 learns two Q functions
 - uses the smaller of the two Q-values to form the targets in the Bellman error loss functions

$$y(r, s', d) = r + \gamma (1 - d) \min_{i=1,2} Q_{\phi_{i, \text{targ}}}(s', a'(s'))$$

- Trick two: "delayed" policy updates
 - Updates the policy (and target networks) less frequently than the Q-function
- Trick three: target policy smoothing
 - Adds noise to the target action, to make it harder for the policy to exploit Qfunction errors by smoothing out Q along changes in action

$$a'(s') = \operatorname{clip}\left(\mu_{\theta_{\operatorname{targ}}}(s') + \operatorname{clip}(\epsilon, -c, c), a_{Low}, a_{High}\right), \quad \epsilon \sim \mathcal{N}(0, \sigma)$$

Twin Delayed DDPG (TD3)

Algorithm 1 Twin Delayed DDPG

1: Input: initial policy parameters θ , Q-function parameters ϕ_1 , ϕ_2 , empty replay buffer \mathcal{D}

- 2: Set target parameters equal to main parameters $\theta_{\text{targ}} \leftarrow \theta$, $\phi_{\text{targ},1} \leftarrow \phi_1$, $\phi_{\text{targ},2} \leftarrow \phi_2$
- 3: repeat
- 4: Observe state s and select action $a = \operatorname{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$, where $\epsilon \sim \mathcal{N}$
- 5: Execute a in the environment
- 6: Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 7: Store (s, a, r, s', d) in replay buffer \mathcal{D}
- 8: If s' is terminal, reset environment state.
- 9: if it's time to update then
- 10: for j in range(however many updates) do
- 11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from \mathcal{D}
- 12: Compute target actions

$$a'(s') = \operatorname{clip}\left(\mu_{\theta_{\operatorname{targ}}}(s') + \operatorname{clip}(\epsilon, -c, c), a_{Low}, a_{High}\right), \quad \epsilon \sim \mathcal{N}(0, \sigma)$$

13: Compute targets

$$y(r, s', d) = r + \gamma(1 - d) \min_{i=1,2} Q_{\phi_{\text{targ},i}}(s', a'(s'))$$

Update Q-functions by one step of gradient descent using

$$\nabla_{\phi_i} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} \left(Q_{\phi_i}(s,a) - y(r,s',d) \right)^2 \quad \text{for } i = 1,2$$

if $j \mod \text{policy_delay} = 0$ then Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi_1}(s, \mu_{\theta}(s))$$

Update target networks with

$$\phi_{\text{targ},i} \leftarrow \rho \phi_{\text{targ},i} + (1-\rho)\phi_i \qquad \text{for } i = 1,2$$

$$\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1-\rho)\theta$$

18: end if
19: end for
20: end if
21: until convergence

14:

15:

16:

17:

- An algorithm that optimizes a stochastic policy in an off-policy way
- Entropy-regularized RL

$$\pi^* = \arg \max_{\pi} \mathop{\mathrm{E}}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t \left(R(s_t, a_t, s_{t+1}) + \alpha H\left(\pi(\cdot | s_t)\right) \right) \right]$$

Entropy
$$H(P) = \mathop{\mathrm{E}}_{x \sim P} \left[-\log P(x) \right]$$

increasing entropy results in more exploration, which can accelerate learning later on

$$V^{\pi}(s) = \mathop{\mathrm{E}}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(R(s_{t}, a_{t}, s_{t+1}) + \alpha H\left(\pi(\cdot|s_{t})\right) \right) \middle| s_{0} = s \right] \quad V^{\pi}(s) = \mathop{\mathrm{E}}_{a \sim \pi} \left[Q^{\pi}(s, a) \right] + \alpha H\left(\pi(\cdot|s)\right)$$
$$Q^{\pi}(s, a) = \mathop{\mathrm{E}}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}, s_{t+1}) + \alpha \sum_{t=1}^{\infty} \gamma^{t} H\left(\pi(\cdot|s_{t})\right) \middle| s_{0} = s, a_{0} = a \right]$$

11/16/2022

t=1

- SAC learns a policy and two Q-functions
 - Uses entropy regularization
 - Train a stochastic policy

$$Q^{\pi}(s, a) = \mathop{\mathbb{E}}_{\substack{s' \sim P \\ a' \sim \pi}} [R(s, a, s') + \gamma \left(Q^{\pi}(s', a') + \alpha H\left(\pi(\cdot|s')\right)\right)]$$

= $\mathop{\mathbb{E}}_{\substack{s' \sim P \\ a' \sim \pi}} [R(s, a, s') + \gamma \left(Q^{\pi}(s', a') - \alpha \log \pi(a'|s')\right)]$

Approximate expectation with samples $Q^{\pi}(s, a) \approx r + \gamma \left(Q^{\pi}(s', \tilde{a}') - \alpha \log \pi(\tilde{a}'|s')\right), \quad \tilde{a}' \sim \pi(\cdot|s')$

• Q-learning

$$L(\phi_i, \mathcal{D}) = \mathop{\mathrm{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left[\left(Q_{\phi_i}(s, a) - y(r, s', d) \right)^2 \right]$$

$$y(r,s',d) = r + \gamma(1-d) \left(\min_{j=1,2} Q_{\phi_{\operatorname{targ},j}}(s',\tilde{a}') - \alpha \log \pi_{\theta}(\tilde{a}'|s') \right), \quad \tilde{a}' \sim \pi_{\theta}(\cdot|s')$$

• Policy learning maximize $V^{\pi}(s) = \mathop{\mathbb{E}}_{a \sim \pi} [Q^{\pi}(s, a)] + \alpha H(\pi(\cdot|s))$ = $\mathop{\mathbb{E}}_{a \sim \pi} [Q^{\pi}(s, a) - \alpha \log \pi(a|s)]$

reparameterization trick

$$\tilde{a}_{\theta}(s,\xi) = \tanh\left(\mu_{\theta}(s) + \sigma_{\theta}(s)\odot\xi\right), \quad \xi \sim \mathcal{N}(0,I)$$

• Policy learning

$$\mathop{\mathrm{E}}_{a \sim \pi_{\theta}} \left[Q^{\pi_{\theta}}(s, a) - \alpha \log \pi_{\theta}(a|s) \right] = \mathop{\mathrm{E}}_{\xi \sim \mathcal{N}} \left[Q^{\pi_{\theta}}(s, \tilde{a}_{\theta}(s, \xi)) - \alpha \log \pi_{\theta}(\tilde{a}_{\theta}(s, \xi)|s) \right]$$

$$\max_{\substack{\theta \\ \xi \sim \mathcal{N}}} \mathop{\mathrm{E}}_{\substack{s \sim \mathcal{D} \\ \xi \sim \mathcal{N}}} \left[\min_{j=1,2} Q_{\phi_j}(s, \tilde{a}_{\theta}(s, \xi)) - \alpha \log \pi_{\theta}(\tilde{a}_{\theta}(s, \xi) | s) \right]$$

Algorithm 1 Soft Actor-Critic

- 1: Input: initial policy parameters θ , Q-function parameters ϕ_1 , ϕ_2 , empty replay buffer \mathcal{D}
- 2: Set target parameters equal to main parameters $\phi_{\text{targ},1} \leftarrow \phi_1, \phi_{\text{targ},2} \leftarrow \phi_2$

3: repeat

- 4: Observe state s and select action $a \sim \pi_{\theta}(\cdot|s)$
- 5: Execute a in the environment
- 6: Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 7: Store (s, a, r, s', d) in replay buffer \mathcal{D}
- 8: If s' is terminal, reset environment state.
- 9: if it's time to update then
- 10: for j in range(however many updates) do
- 11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from \mathcal{D}
- 12: Compute targets for the Q functions:

$$y(r,s',d) = r + \gamma(1-d) \left(\min_{i=1,2} Q_{\phi_{\operatorname{targ},i}}(s',\tilde{a}') - \alpha \log \pi_{\theta}(\tilde{a}'|s') \right), \quad \tilde{a}' \sim \pi_{\theta}(\cdot|s')$$

13: Update Q-functions by one step of gradient descent using

$$\nabla_{\phi_i} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} \left(Q_{\phi_i}(s,a) - y(r,s',d) \right)^2 \quad \text{for } i = 1,2$$

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} \left(\min_{i=1,2} Q_{\phi_i}(s, \tilde{a}_{\theta}(s)) - \alpha \log \pi_{\theta} \left(\tilde{a}_{\theta}(s) | s \right) \right),$$

where $\tilde{a}_{\theta}(s)$ is a sample from $\pi_{\theta}(\cdot|s)$ which is differentiable wrt θ via the reparametrization trick.

15: Update target networks with

$$\phi_{\text{targ},i} \leftarrow \rho \phi_{\text{targ},i} + (1-\rho)\phi_i \qquad \text{for } i = 1,2$$

16: end for17: end if18: until convergence

Summary

- Vanilla Policy Gradient
- Trust Region Policy Optimization (TRPO)
- Proximal Policy Optimization (PPO)
- Deep Deterministic Policy Gradient (DDPG)
- Twin Delayed DDPG (TD3)
- Soft Actor-Critic (SAC)

Further Reading

 OpenAl Spinning Up in Deep RL <u>https://spinningup.openai.com/en/latest/index.html</u>