Reinforcement Learning: Overview and
Foundations

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation

Professor Yu Xiang

The University of Texas at Dallas

Reinforcement Learning

>

Robot
>
State 8 t Reward 'rt Action a,t
¢ Environment <
St+1

Reinforcement Learning: aJt — ’]T(St)

Imitation Learning:

RL Examples

Control

https://spinningup.openai.com/en/latest/spinningup/rl intro.html

https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

RL Concepts

 State s: a complete description of the state of the world

* Observation o: partial description of a state
* Fully observed vs. partially observed

* Action space: the set of all valid actions in a given environment
* Discrete action space vs. continuous action space

* Policies: a policy is a rule used by an agent to decide what action to
take

* Deterministic policy ¢ — /LL(St)
* Stochastic polic
cpolicy ¢, NW(.‘St)

RL Concepts

 Parameterized policies a: = pg(5¢)

a; ~ mp(-|s¢)

e Deterministic policy pi_net = nn.sequential(
nn.Linear(obs_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear (64, act_dim)

» Stochastic policy)

* Categorical policy for discrete actions log ﬂ’g(a|3) = log [Pg(s)]ﬂ
 Diagonal Gaussian policy: mean action ﬂ&(S)

Log standard deviation log 0'9(8)

RL Concepts

* Diagonal Gaussian policy
* Sampling g = pg(s) +op(s) ©z 2~ N(0,1)

* Log-likelihood

1 (ai = pi)®
log mg(als) = == (Z (= + 2 log O‘i) + klog 2?1')

RL Concepts

* A Trajectory is a sequence of states and actions in the world
T = (SU; ap, 51, 041,)
* Start-state distribution sy ~ py(-)

e State transitions are governed by natural laws of the environment
* Deterministic g5, | = f(Stjﬁt)

e Stochastic

St4+1 ™ P(‘|3t;ﬂt)

RL Concepts

* Reward function 7, = R(s;, as, S¢41) re = R(sy) ry = R(sy, ap)
T

* Finite-horizon undiscounted return R(7) = Zfrt
=0

* Infinite-horizon discounted return R(7) = Z’}’t?"t v e (0,1)
t=0

The RL Problem

* The goal of RL is to select a policy which maximizes expected return
when the agent acts according to it

* Probability distribution over trajectories
T—1

P(r|m) = po(s0) | | P(ses1lse, ar)m(ails:)

t=0

I(m) = [P(rimR(r) = E [R(r)

T

* Expected return

* The central optimization problem 7* = arg max J(r)
T

Optimal policy

Value Functions

* Value of a state or a state-action pair

* The expected return if you start in that state or state-action pair, and then act
according to a particular policy forever after

* On-policy Value Function V™(s) = E [R(7)|so = s]

* On-policy Action-Value Function Q" (s,a) = TE}T R(7) [so = s,a0 = a

* Optimal Value Function Vi(s) = max B _[R(7)[so = 5]

* Optimal Action-Value Function (*(s,a) = max E [R(7)|sy = s, a9 = a]

T~TT

Value Functions

* Connection
Vi(s)= B [Q"(s,a)) V(s) =maxQ'(s,a)

* The optimal policy in s will select whichever action maximizes the
expected return startingin s

a*(s) = arg max Q" (s,a)

Bellman Equations

* The value of your starting point is the reward you expect to get
from being there, plus the value of wherever you land next

Vi(s) = E [r(s,a) +yV7(s)],

. s'~P
On-policy [

Q"(s,a) = E

s'~P

a'~7

r(s,0)+7 E [Q”(s’,a’)}]

Optimal policy

[’r(s, a) + vy max Q" (s, a')]

Advantage Functions

* How much better it is to take a specific action a in state s, over
randomly selecting an action according to 7(:|s)

A"(s,a) = Q" (s,a) = V" (s)

Markov Decision Processes (MDPs)

* AMDP is a 5-tuple (S, A, R, P, py)

o G is the set of all valid states,

o A is the set of all valid actions,

e R: S x Ax S — Risthereward function, with r; = R(St, i, SHl),

« P: S x A— P(S)is the transition probability function, with P(s'|s, a) being
the probability of transitioning into state ¢/ if you start in state s and take action a,

o and po is the starting state distribution.

A Taxonomy of RL Algorithms

.
RL Algorithms J

Fa T,
Model-Free RL ‘ Model-Based RL
J “‘ —
) { R’ i 3 .
LPD“CV Optimization Q-Learning Learn the Model Given the Model
Policy Gradient [« r) > DQN » World Models AlphaZero J
LS A DDPG { 5 A L. A
A2C / A3C [* ¢ > C51 > I2A
L - ; TD3 : L .
s ™ L ™
PPO < » QR-DOQN » MBMF
’ > SAC < ‘
f Y g) r I’ y
TRPO < > HER > MBVE

Model-Free vs. Model-based RL

 Whether the agent has access to (or learns) a model of the
environment

* A model is a function which predicts state transitions and reward
* A model allows the agent to plan by thinking ahead

* A ground-truth model of the environment is usually not available to
the agent

Model-Free RL

* Policy optimization
* Represent a policy as my(als)
* Optimize the parameters g by gradient descent

* Optimization is on-policy: update only uses data collected while acting
according to the most recent version of the policy

* Q-Learning
* Learns an approximator (Qy(s,a) for the optimal action-value function Q*(s,a)

e Optimization is off-policy: each update can use data collected at any point
during training (sample efficient)

a(s) = arg max Qo(s,a)

Model-based RL

* How to use the model?
* Pure planning: model-predictive control (MPC)

* Expert iteration
* uses a planning algorithm (like Monte Carlo Tree Search) in the model

* The policy is updated to produce an action more like the planning
algorithm’s output

e https://www.deepmind.com/blog/alphago-zero-starting-from-scratch
e Data augmentation for model-free methods

* Embedding planning loop into policies
* The policy can learn to choose how and when to use the plans

https://www.deepmind.com/blog/alphago-zero-starting-from-scratch

summary

* RL concepts

* Model-free vs. model-based methods

Further Reading

* OpenAl Spinning Up in Deep RL
https://spinningup.openai.com/en/latest/index.html

https://spinningup.openai.com/en/latest/index.html

