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Motion Planning

* Motion planning: finding a robot motion from a start state to a goal
state (A to B)
* Avoids obstacles
 Satisfies other constraints such as joint limits or torque limits

* Path planning is a purely geometric problem of finding a collision-free
path




A* Search Algorithm

Algorithm 10.1 A* search.

1: OPEN « {1}

2: past_cost[1] « 0, past_cost[node] + infinity for node € {2,..., N}
3: while OPEN is not empty do

4:  current < first node in OPEN, remove from OPEN

5. add current to CLOSED
6: if current is in the goal set then
7: return SUCCESS and the path to current

8: end if

9:  for each nbr of current not in CLOSED do

10: tentative_past_cost < past_cost[current]+cost[current,nbr]

11: if tentative_past_cost < past_cost[nbr] then

12: past_cost[nbr] < tentative_past_cost

13: parent [nbr] < current

14: put (or move) nbr in sorted list OPEN according to

est_total_cost [nbr] < past_cost[nbr] + -

heuristic_cost_to_go(nbr)

15: end if

16: end for
17: end while
18: return FAILURE




Grid Methods

* Discretize the configuration space into a grid - .
* |f the C-space is n dimension, we use k grid points along +
each dimension . .
* The C-space is represented by k’n grid points Hreonnected
* We can apply the A* search algorithm for path ; | {
planning with a C-space grid
* Define the neighbors of a grid point 8-connected
* |f only axis-aligned motions are used, the heuristic cost-to-
go should be based on Manhattan distance . o
WS

* Anode nbris added to OPEN only if the step from current to NS
nbr is collision-free
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Grid Methods

 A* grid-based path planner




Grid Methods

* Grid-based path planning is only suitable for low-dimensional C-space
* Number of grid points kn >>> np-power(32, 7.0)
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* Multi-resolution grid representation
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Grid Methods with Motion Constraints

* A robot may not be able to reach all the neighbors in a grid
* A car cannot move to the side
* motions for a fast-moving robot arm should be planned in the state space

q A

Sample trajectories emanating
- from three initial states in the
phase space of a dynamic system




Grid Methods with Motion Constraints

* Control for mobile robot (v, w)
 v: forward-backward linear velocity
* w: angular velocity
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Grid Methods with Motion Constra

Algorithm 10.2 Grid-based Dijkstra planner for a wheeled mobile robot.
1: OPEN < {Q'start}
2: past_cost [gstart] < 0
3: counter <+ 1
4: while OPEN is not empty and counter < MAXCOUNT do
5.  current < first node in OPEN, remove from OPEN
6: if current is in the goal set then
7 return SUCCESS and the path to current
8: end if
9:  if current is not in a previously occupied C-space grid cell then
10: mark grid cell occupied
11: counter < counter + 1
12: for each control in the discrete control set do
13: integrate control forward a short time At from current to guew
14: if the path to ¢uew is collision-free then
15: compute cost of the path to gnew
16: place gnew in OPEN, sorted by cost
17: parent [¢new] ¢ current
18: end if
19: end for
20: end if .
: Reversals are penalized
21: end while
22: return FAILURE




Grid Methods with Motion Constraints

* For a robot arm, we can plan directly in the state space (q, ¢)

* Let A(q, ¢) represent the set of accelerations that are feasible on the
basis of the limited joint torques

* Discretization

* Apply a breath-first search in the state space
* To find a trajectory from a start state to a goal
* When exploration is made from (q, q)
* Use A(q, q) to find the control actions
* Integrate the control actions for A\ ¢




Sampling Methods

* Grid-based methods delivers optimal solutions subject to the chosen
discretization, but computationally expensive for high DOFs

* Sampling methods
* Randomly or deterministically sampling the C-space or state-space to find the
motion plan

* Give up resolution-optimal solutions of a grid search, quickly find solutions in
high-dimensional state space

* Most sampling methods are probabilistically complete: the probability of
finding a solution, when one exists, approaches 100% as the number of

samples goes to infinity
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Rapidly exploring Random Trees (RRTs)

Algorithm 10.3 RRT algorithm. kinematic problems

1: initialize search tree 1" with ZTgiart L = q
2: while 7' is less than the maximum tree size do
32  Tgamp ¢ sample from A

* Line 3, uniform sampling with
a bias towards goal

4:  Dnearest < Nearest node in T 0 Zeamp
5:  employ a local planner to find a motion from Zyearest 10 Tnew il * Line 4, Euclidean distance
the direction of Tgamp * Line 5, use a small distance d

6: if the motion is collision-free then

7: add Zhew to T with an edge from Tiuearest 10 Thew

8: if Tpew 1S in Xyoa then

9: return SUCCESS and the motion to Zpew
10: end if
11:  end if
12: end while dynamic problems
13: return FAILURE T — (q7 q)




Rapidly exploring Random Trees (RRTs)
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A tree generated by applying a
uniformly-distributed random
motion from a randomly chosen A tree generated by the RRT algorithm
tree node does not explore very far.




Rapidly exploring Random Trees (RRTs)

An animation of an RRT starting from iteration 0 to 10000
https://en.wikipedia.org/wiki/Rapidly-exploring random tree



https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree

Rapidly exploring Random Trees (RRTs)

e Bidirectional RRT

* Grows two trees, one forward from Zstart , One backward from ZLgoal
* Alternating between growing the two trees Tgamp
* Trying to connect the two trees by choosing Zgoal from the other tree

* Con: faster, can reach the exact goal
* Pro: the local planer might not be able to connect the two trees




Bidirectional RRT

https://github.com/Jakelnit/RRT
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https://github.com/JakeInit/RRT

Rapidly exploring Random Trees (RRTs)

* RRT*

* Continually rewires the search tree to ensure that it always encodes the
shortest path from Zgt,rt to each node in the tree

* Toinsert Ty to the tree, consider £ € Xpear
* Collision free
* Minimizes the total case from .t 10 Tpew

 Consider each & € X,ear to see whether it could be reached at lower cost
by a motion through 7,.., , change the parent of x to x .., (rewiring)




RRT vs. RRT*




Probabilistic Roadmaps (PRMs)

* PRM uses sampling to build a roadmap representation of Cfree

* Connect a start node {start and a goal node {goal to the roadmap

 Search for a path, e.g., using A*




Probabilistic Roadmaps (PRMs)

* PRM uses sampling to build a roadmap representation of Cfree

Algorithm 10.4 PRM roadmap construction algorithm (undirected graph).
1: for:=1,...,N do

2 q; < sample from Cepree
3 add ¢; to R

4: end for

5. fori=1,...,N do
6

7

8

N (q;) < k closest neighbors of ¢;

for each ¢ € N(q;) do
if there is a collision-free local path from ¢ to ¢; and
there is not already an edge from ¢ to ¢; then

9: add an edge from ¢ to ¢; to the roadmap R
10: end if

11: end for

12: end for

13: return R




Nonlinear Optimization

* The general motion planning problem

find
minimizing

subject to

vVt €
Vt €
Vt €

0,7
0,7
0,7

Smoothing cost function




Trajectory Optimization: CHOMP
fmotion (g) — fobstacle (6) + )\fsmooth (6)

g — (q]_, . )QT) A trajectory of robot joint configurations

N steps gradient descent

Initial trajectory with collision /\ AlEIEC) 9 teln)

Covariant Hamiltonian Optimization for Motion Planning (CHOMP): Ratliff-Zucker-Bagnell-Srinivasa, ICRA’09




OMG Planner: Trajectory Optimization and Grasp
Selection

OMG lter: 50

100 grasps

Modeling the goal set distribution
Wang-Xiang-Fox, RSS'20




summary

* Grid methods
° A*

* Sampling methods
* RRTs
* PRMs

* Nonlinear optimization




Further Reading

e Chapter 10 in Kevin M. Lynch and Frank C. Park. Modern Robotics:
Mechanics, Planning, and Control. 1st Edition, 2017.

* PRMs. L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic
roadmaps for fast path planning in high dimensional conguration spaces.
|EEE Transactions on Robotics and Automation, 12:566-580, 1996.

* RRT. S. M. LaValle and J. J. Kuner. Rapidly-exploring random trees: Progress
and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic
and Computational Robotics: New Directions. A. K. Peters, Natick, MA,
2001.
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