Motion Planning: Algorithms

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

NIV

Motion Planning

- Motion planning: finding a robot motion from a start state to a goal state (A to B)
 - Avoids obstacles
 - Satisfies other constraints such as joint limits or torque limits
- Path planning is a purely geometric problem of finding a collision-free path

A* Search Algorithm

Algorithm 10.1 A^* search.

```
1: OPEN \leftarrow \{1\}
 2: past_cost[1] \leftarrow 0, past_cost[node] \leftarrow infinity for node \in \{2, \ldots, N\}
 3: while OPEN is not empty do
     current \leftarrow first node in OPEN, remove from OPEN
 4:
     add current to CLOSED
 5:
     if current is in the goal set then
 6:
        return SUCCESS and the path to current
 7:
     end if
 8:
     for each nbr of current not in CLOSED do
 9:
        tentative_past_cost <- past_cost[current]+cost[current,nbr]</pre>
10:
        if tentative_past_cost < past_cost[nbr] then
11:
          12:
          parent[nbr] \leftarrow current
13:
          put (or move) nbr in sorted list OPEN according to
14:
               est\_total\_cost[nbr] \leftarrow past\_cost[nbr] +
                        heuristic_cost_to_go(nbr)
        end if
15:
     end for
16:
```

17: end while

18: return FAILURE

11/2/2022

11/2/2022

Grid Methods

- Discretize the configuration space into a grid
 - If the C-space is n dimension, we use k grid points along each dimension
 - The C-space is represented by k^n grid points
- We can apply the A* search algorithm for path planning with a C-space grid
 - Define the neighbors of a grid point
 - If only axis-aligned motions are used, the heuristic cost-togo should be based on Manhattan distance
 - A node nbr is added to OPEN only if the step from current to nbr is collision-free

Grid Methods

• A* grid-based path planner

Grid Methods

- Grid-based path planning is only suitable for low-dimensional C-space
 - Number of grid points $\, k^n \,$

>>> np.power(32, 7.0)
34359738368.0

• Multi-resolution grid representation

- A robot may not be able to reach all the neighbors in a grid
 - A car cannot move to the side
 - motions for a fast-moving robot arm should be planned in the state space

Sample trajectories emanating from three initial states in the phase space of a dynamic system

- Control for mobile robot (v, ω)
 - v: forward-backward linear velocity
 - w: angular velocity

Algorithm 10.2 Grid-based Dijkstra planner for a wheeled mobile robot.

1:	$OPEN \leftarrow \{q_{start}\}$
2:	past cost $[a_{start}] \leftarrow 0$
3:	counter $\leftarrow 1$
4:	while OPEN is not empty and counter < MAXCOUNT do
5:	$current \leftarrow first node in OPEN, remove from OPEN$
6:	if current is in the goal set then
7:	return SUCCESS and the path to current
8:	end if
9:	if current is not in a previously occupied C-space grid cell then
10:	mark grid cell occupied
11:	$_$ counter \leftarrow counter + 1
12:	for each control in the discrete control set do
13:	integrate control forward a short time Δt from current to q_{new}
14:	if the path to q_{new} is collision-free then
15:	compute cost of the path to q_{new}
16:	place q_{new} in OPEN, sorted by cost
17:	$\texttt{parent}[q_{\text{new}}] \leftarrow \texttt{current}$
18:	end if
19:	end for
20:	end if
21:	end while
22:	return FAILURE

Reversals are penalized

11/2/2022

- For a robot arm, we can plan directly in the state space $\,(q,\dot{q})\,$
- Let $\mathcal{A}(q,\dot{q})$ represent the set of accelerations that are feasible on the basis of the limited joint torques
- Discretization
- Apply a breath-first search in the state space
 - To find a trajectory from a start state to a goal
 - When exploration is made from (q,\dot{q})
 - Use $\mathcal{A}(q,\dot{q})$ to find the control actions
 - Integrate the control actions for Δt

Sampling Methods

- Grid-based methods delivers optimal solutions subject to the chosen discretization, but computationally expensive for high DOFs
- Sampling methods
 - Randomly or deterministically sampling the C-space or state-space to find the motion plan
 - Give up resolution-optimal solutions of a grid search, quickly find solutions in high-dimensional state space
 - Most sampling methods are probabilistically complete: the probability of finding a solution, when one exists, approaches 100% as the number of samples goes to infinity

Algorithm 10.3 RRT algorithm.

- 1: initialize search tree T with x_{start}
- 2: while T is less than the maximum tree size do
- 3: $x_{\text{samp}} \leftarrow \text{sample from } \mathcal{X}$
- 4: $x_{\text{nearest}} \leftarrow \text{nearest node in } T \text{ to } x_{\text{samp}}$
- 5: employ a local planner to find a motion from x_{nearest} to x_{new} in the direction of x_{samp}
- 6: **if** the motion is collision-free **then**
- 7: add x_{new} to T with an edge from x_{nearest} to x_{new}
- 8: **if** x_{new} is in $\mathcal{X}_{\text{goal}}$ **then**
- 9: return SUCCESS and the motion to x_{new}
- 10: **end if**
- 11: **end if**
- 12: end while

13: **return** FAILURE

kinematic problems

x = q

- Line 3, uniform sampling with a bias towards goal
- Line 4, Euclidean distance
- Line 5, use a small distance d

dynamic problems

$$x = (q, \dot{q})$$

A tree generated by applying a uniformly-distributed random motion from a randomly chosen tree node does not explore very far. A tree generated by the RRT algorithm

2000 nodes

Yu Xiang

An animation of an RRT starting from iteration 0 to 10000

https://en.wikipedia.org/wiki/Rapidly-exploring random tree

- Bidirectional RRT
 - Grows two trees, one forward from $x_{
 m start}$, one backward from $x_{
 m goal}$
 - Alternating between growing the two trees x_{samp}
 - Trying to connect the two trees by choosing $x_{
 m goal}$ from the other tree
 - Con: faster, can reach the exact goal
 - Pro: the local planer might not be able to connect the two trees

Bidirectional RRT

https://github.com/JakeInit/RRT

• RRT*

- Continually rewires the search tree to ensure that it always encodes the shortest path from $x_{\rm start}$ to each node in the tree
- To insert $x_{
 m new}$ to the tree, consider $\,x\,\in\,\mathcal{X}_{
 m near}\,$
 - Collision free
 - Minimizes the total case from $x_{
 m start}$ to $x_{
 m new}$
- Consider each $x \in X_{near}$ to see whether it could be reached at lower cost by a motion through x_{new} , change the parent of x to x_{new} (rewiring)

RRT vs. RRT*

RRT

RRT*

Probabilistic Roadmaps (PRMs)

- PRM uses sampling to build a roadmap representation of $\mathcal{C}_{ ext{free}}$
- Connect a start node $\, q_{
 m start}$ and a goal node $q_{
 m goal}$ to the roadmap
- Search for a path, e.g., using A*

Probabilistic Roadmaps (PRMs)

• PRM uses sampling to build a roadmap representation of ${\cal C}_{
m free}$

Algorithm 10.4 PRM roadmap construction algorithm (undirected graph).

- 1: for i = 1, ..., N do
- 2: $q_i \leftarrow \text{sample from } \mathcal{C}_{\text{free}}$
- 3: add q_i to R
- 4: end for
- 5: for i = 1, ..., N do
- 6: $\mathcal{N}(q_i) \leftarrow k$ closest neighbors of q_i
- 7: for each $q \in \mathcal{N}(q_i)$ do
- 8: **if** there is a collision-free local path from q to q_i and there is not already an edge from q to q_i **then**
- 9: add an edge from q to q_i to the roadmap R
- 10: **end if**
- 11: **end for**
- 12: **end for**
- 13: return R

Nonlinear Optimization

• The general motion planning problem

minimizing subject to

find

u(t), q(t), T J(u(t), q(t), T) $\dot{x}(t) = f(x(t), u(t)),$ $u(t) \in \mathcal{U},$ $q(t) \in \mathcal{C}_{\text{free}},$ $x(0) = x_{\text{start}},$ $x(T) = x_{\text{goal}}.$

 $\begin{aligned} \forall t \in [0, T], \\ \forall t \in [0, T], \\ \forall t \in [0, T], \end{aligned}$

Smoothing cost function

$$J = \frac{1}{2} \int_0^T \dot{u}^{\mathrm{T}}(t) \dot{u}(t) dt$$

Covariant Hamiltonian Optimization for Motion Planning (CHOMP): Ratliff-Zucker-Bagnell-Srinivasa, ICRA'09

11/2/2022

Yu Xiang

OMG Planner: Trajectory Optimization and Grasp Selection

OMG Iter: 50

Modeling the goal set distribution

Wang-Xiang-Fox, RSS'20

11/2/2022

Yu Xiang

Summary

- Grid methods
 - A*
- Sampling methods
 - RRTs
 - PRMs
- Nonlinear optimization

Further Reading

- Chapter 10 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.
- PRMs. L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps for fast path planning in high dimensional conguration spaces. IEEE Transactions on Robotics and Automation, 12:566-580, 1996.
- RRT. S. M. LaValle and J. J. Kuner. Rapidly-exploring random trees: Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions. A. K. Peters, Natick, MA, 2001.