## Dynamics of Open Chains: A Single Rigid Body

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

## Robot Dynamics

- Study motion of robots with the forces and torques that case them
- Equations of motion
- A set of second-order differential equations

$$
\tau=M(\theta) \ddot{\theta}+h(\theta, \dot{\theta}) \quad \text { Joint variables } \theta \in \mathbb{R}^{n}
$$

Joint forces and torques $\tau \in \mathbb{R}^{n} \quad M(\theta) \in \mathbb{R}^{n \times n}$ a symmetric positive-definite mass matrix

$$
h(\theta, \dot{\theta}) \in \mathbb{R}^{n} \quad \begin{aligned}
& \text { forces that lump together centripetal, Coriolis, gravity, } \\
& \text { and friction terms that depend on } \theta \text { and } \dot{\theta}
\end{aligned}
$$

## Forward and Inverse Dynamics

- Forward dynamics
- Given robot state $(\theta, \dot{\theta})$ and the joint forces and torques
- Determine the robot's acceleration

$$
\ddot{\theta}=M^{-1}(\theta)(\tau-h(\theta, \dot{\theta}))
$$

- Inverse dynamics
- Given robot state $(\theta, \dot{\theta})$ and a desired acceleration
- Find the joint forces and torques

$$
\tau=M(\theta) \ddot{\theta}+h(\theta, \dot{\theta})
$$

## Robot Dynamics

- Lagrangian formulation
- Kinetic energy and potential energy
- Newton-Euler formulation
- $\mathrm{F}=\mathrm{ma}$


## Dynamics of a Single Rigid Body

- A rigid body with a set of point masses
- Total mass $\mathfrak{m}=\sum_{i} \mathfrak{m}_{i}$
- The origin of the body frame

Center of mass $\sum_{i} \mathfrak{m}_{i} r_{i}=0$

- If some other point is chosen as origin, move the origin to $(1 / \mathfrak{m}) \sum_{i} \mathfrak{m}_{i} r_{i}$



## Dynamics of a Single Rigid Body

- Assume the body is moving with a body twist $\mathcal{V}_{b}=\left(\omega_{b}, v_{b}\right)$
- $p_{i}(t)$ be the time-varying position of $\mathfrak{m}_{i}$, initially at $r_{i}$


$$
\begin{aligned}
\dot{p}_{i} & =v_{b}+\omega_{b} \times p_{i} \\
\ddot{p}_{i} & =\dot{v}_{b}+\frac{d}{d t} \omega_{b} \times p_{i}+\omega_{b} \times \frac{d}{d t} p_{i} \\
& =\dot{v}_{b}+\dot{\omega}_{b} \times p_{i}+\omega_{b} \times\left(v_{b}+\omega_{b} \times p_{i}\right) \\
\ddot{p}_{i} & =\dot{v}_{b}+\left[\dot{\omega}_{b}\right] r_{i}+\left[\omega_{b}\right] v_{b}+\left[\omega_{b}\right]^{2} r_{i}
\end{aligned}
$$

## Dynamics of a Single Rigid Body

- For a point mass $f_{i}=\mathfrak{m}_{i} \ddot{p}_{i}$

$$
f_{i}=\mathfrak{m}_{i}\left(\dot{v}_{b}+\left[\dot{\omega}_{b}\right] r_{i}+\left[\omega_{b}\right] v_{b}+\left[\omega_{b}\right]^{2} r_{i}\right)
$$

- Moment of the point mass $m_{i}=\left[r_{i}\right] f_{i}$
- Total force and moment on the body

$$
\text { Wrench } \quad \mathcal{F}_{b}=\left[\begin{array}{c}
m_{b} \\
f_{b}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i} m_{i} \\
\sum_{i} f_{i}
\end{array}\right]
$$

## Dynamics of a Single Rigid Body

- Linear dynamics

$$
\begin{aligned}
f_{b} & =\sum_{i} \mathfrak{m}_{i}\left(\dot{v}_{b}+\left[\dot{\omega}_{b}\right] r_{i}+\left[\omega_{b}\right] v_{b}+\left[\omega_{b}\right]^{2} r_{i}\right) \\
& =\sum_{i} \mathfrak{m}_{i}\left(\dot{v}_{b}+\left[\omega_{b}\right] v_{b}\right)-\sum_{i} \mathfrak{m}_{i}\left[r_{i}\right] \dot{\omega}_{b}+\sum_{i} \mathfrak{m}_{i}\left[r_{i}\right]\left[\omega_{b}\right] \omega_{b} \\
& =\sum_{i} \mathfrak{m}_{i}\left(\dot{v}_{b}+\left[\omega_{b}\right] v_{b}\right) \\
& =\mathfrak{m}\left(\dot{v}_{b}+\left[\omega_{b}\right] v_{b}\right) .
\end{aligned}
$$

## Dynamics of a Single Rigid Body

- Rotational dynamics

$$
\begin{array}{rlr}
m_{b}= & \sum_{i} \mathfrak{m}_{i}\left[r_{i}\right]\left(\dot{v}_{b}+\left[\dot{\omega}_{b}\right] r_{i}+\left[\omega_{b}\right] v_{b}+\left[\omega_{b}\right]^{2} r_{i}\right) \\
= & \sum_{i} \mathfrak{m}_{i}\left[r_{i} \vec{i}_{\dot{v}_{b}}+\sum_{i}^{0} \mathfrak{m}_{i}\left[r_{i}\right]\left[\omega_{b}\right]\right)_{b} \\
& +\sum_{i} \mathfrak{m}_{i}\left[r_{i}\right]\left(\left[\dot{\omega}_{b}\right] r_{i}+\left[\omega_{b}\right]^{2} r_{i}\right) & \text { Body's rotational inertia matrix } \\
= & \sum_{i} \mathfrak{m}_{i}\left(-\left[r_{i}\right]^{2} \dot{\omega}_{b}-\left[r_{i}\right]^{\mathrm{T}}\left[\omega_{b}\right]^{\mathrm{T}}\left[r_{i}\right] \omega_{b}\right) \quad \mathcal{I}_{b}=-\sum_{i} \mathfrak{m}_{i}\left[r_{i}\right]^{2} \in \mathbb{R}^{3 \times 3} \\
= & \sum_{i} \mathfrak{m}_{i}\left(-\left[r_{i}\right]^{2} \dot{\omega}_{b}-\left[\omega_{b}\right]\left[r_{i}\right]^{2} \omega_{b}\right) \\
= & \left(-\sum_{i} \mathfrak{m}_{i}\left[r_{i}\right]^{2}\right) \dot{\omega}_{b}+\left[\omega_{b}\right]\left(-\sum_{i} \mathfrak{m}_{i}\left[r_{i}\right]^{2}\right) \omega_{b} \\
= & \mathcal{I}_{b} \dot{\omega}_{b}+\left[\omega_{b}\right] \mathcal{I}_{b} \omega_{b}, \quad \quad \text { Euler's equation for a rotating rigid body }
\end{array}
$$

## Dynamics of a Single Rigid Body

- Rotational inertia matrix $\mathcal{I}_{b}=-\sum_{i} \mathfrak{m}_{i}\left[r_{i}\right]^{2} \in \mathbb{R}^{3 \times 3}$

$$
\begin{aligned}
\mathcal{I}_{b}= & {\left[\begin{array}{ccc}
\sum \mathfrak{m}_{i}\left(y_{i}^{2}+z_{i}^{2}\right) & -\sum \mathfrak{m}_{i} x_{i} y_{i} & -\sum \mathfrak{m}_{i} x_{i} z_{i} \\
-\sum \mathfrak{m}_{i} x_{i} y_{i} & \sum \mathfrak{m}_{i}\left(x_{i}^{2}+z_{i}^{2}\right) & -\sum \mathfrak{m}_{i} y_{i} z_{i} \\
-\sum \mathfrak{m}_{i} x_{i} z_{i} & -\sum \mathfrak{m}_{i} y_{i} z_{i} & \sum \mathfrak{m}_{i}\left(x_{i}^{2}+y_{i}^{2}\right)
\end{array}\right] } \\
=\left[\begin{array}{lll}
\mathcal{I}_{x x} & \mathcal{I}_{x y} & \mathcal{I}_{x z} \\
\mathcal{I}_{x y} & \mathcal{I}_{y y} & \mathcal{I}_{y z} \\
\mathcal{I}_{x z} & \mathcal{I}_{y z} & \mathcal{I}_{z z}
\end{array}\right] \cdot & \\
\mathcal{I}_{x x} & =\int_{\mathcal{B}}\left(y^{2}+z^{2}\right) \rho(x, y, z) d V \\
\mathcal{I}_{y y} & =\int_{\mathcal{B}}\left(x^{2}+z^{2}\right) \rho(x, y, z) d V \\
\mathcal{I}_{z z} & =-\int_{\mathcal{B}} x y \rho(x, y, z) d V \\
\mathcal{I}_{x z} & =-\int_{\mathcal{B}} x z \rho(x, y, z) d V \\
& \int_{\mathcal{B}}\left(x^{2}+y^{2}\right) \rho(x, y, z) d V \\
\text { mass density function } & \rho(x, y, z)
\end{aligned}
$$

## Inertia Matrix

- Principal axes of inertia: eigenvectors and eigenvalues of $\mathcal{I}_{b}$
- Directions given by eigenvectors
- Eigenvalues are principal moments of inertia
- If the principal axes are aligned with the axes of $\{\mathrm{b}\}, \mathcal{I}_{b}$ is a diagonal matrix
rotational dynamics $\quad m_{b}=\left[\begin{array}{c}\mathcal{I}_{x x} \dot{\omega}_{x}+\left(\mathcal{I}_{z z}-\mathcal{I}_{y y}\right) \omega_{y} \omega_{z} \\ \mathcal{I}_{y y} \dot{\omega}_{y}+\left(\mathcal{I}_{x x}-\mathcal{I}_{z z}\right) \omega_{x} \omega_{z} \\ \mathcal{I}_{z z} \dot{\omega}_{z}+\left(\mathcal{I}_{y y}-\mathcal{I}_{x x}\right) \omega_{x} \omega_{y}\end{array}\right] \quad \omega_{b}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$


## Inertia Matrix


rectangular parallelepiped:

$$
\begin{gathered}
\text { volume }=a b c, \\
\mathcal{I}_{x x}=\mathfrak{m}\left(w^{2}+h^{2}\right) / 12 \\
\mathcal{I}_{y y}=\mathfrak{m}\left(\ell^{2}+h^{2}\right) / 12 \\
\mathcal{I}_{z z}=\mathfrak{m}\left(\ell^{2}+w^{2}\right) / 12
\end{gathered}
$$


circular cylinder: volume $=\pi r^{2} h$,

$$
\begin{gathered}
\mathcal{I}_{x x}=\mathfrak{m}\left(3 r^{2}+h^{2}\right) / 12, \\
\mathcal{I}_{y y}=\mathfrak{m}\left(3 r^{2}+h^{2}\right) / 12, \\
\mathcal{I}_{z z}=\mathfrak{m} r^{2} / 2
\end{gathered}
$$


ellipsoid:
volume $=4 \pi a b c / 3$,
$\mathcal{I}_{x x}=\mathfrak{m}\left(b^{2}+c^{2}\right) / 5$,
$\mathcal{I}_{y y}=\mathfrak{m}\left(a^{2}+c^{2}\right) / 5$,
$\mathcal{I}_{z z}=\mathfrak{m}\left(a^{2}+b^{2}\right) / 5$

## Inertia Matrix

- Inertia matrix in a rotated frame $\{c\}$
- Kinetic energy is the same in different frame

$$
\begin{aligned}
\frac{1}{2} \omega_{c}^{\mathrm{T}} \mathcal{I}_{c} \omega_{c} & =\frac{1}{2} \omega_{b}^{\mathrm{T}} \mathcal{I}_{b} \omega_{b} \\
& =\frac{1}{2}\left(R_{b c} \omega_{c}\right)^{\mathrm{T}} \mathcal{I}_{b}\left(R_{b c} \omega_{c}\right) \\
& =\frac{1}{2} \omega_{c}^{\mathrm{T}}\left(R_{b c}^{\mathrm{T}} \mathcal{I}_{b} R_{b c}\right) \omega_{c} . \\
\mathcal{I}_{c} & =R_{b c}^{\mathrm{T}} \mathcal{I}_{b} R_{b c}
\end{aligned}
$$

## Steiner's theorem

- The inertia matrix $\mathcal{I}_{q}$ about a frame aligned with $\{b\}$, but at a point in \{b\} $q=\left(q_{x}, q_{y}, q_{z}\right)$, is related to the inertia matrix calculated at the center of mass by

$$
\mathcal{I}_{q}=\mathcal{I}_{b}+\mathfrak{m}\left(q^{\mathrm{T}} q I-q q^{\mathrm{T}}\right)
$$

- Parallel-axis theorem: the scalar inertia $\mathcal{I}_{d}$ about an axis parallel to, but a distance $d$ from, an axis through the center of mass is

$$
\mathcal{I}_{d}=\mathcal{I}_{\mathrm{cm}}+\mathfrak{m} d^{2}
$$

## Inertia Matrix

- Change of reference frame

$$
\begin{gathered}
\mathcal{I}_{c}=R_{b c}^{\mathrm{T}} \mathcal{I}_{b} R_{b c} \\
\mathcal{I}_{q}=\mathcal{I}_{b}+\mathfrak{m}\left(q^{\mathrm{T}} q I-q q^{\mathrm{T}}\right)
\end{gathered}
$$

## Twist-Wrench Formulation

- Linear dynamics $f_{b}=\mathfrak{m}\left(\dot{v}_{b}+\left[\omega_{b}\right] v_{b}\right)$
- Rotation dynamics $m_{b}=\mathcal{I}_{b} \dot{\omega}_{b}+\left[\omega_{b}\right] \mathcal{I}_{b} \omega_{b}$

$$
\begin{aligned}
{\left[\begin{array}{c}
m_{b} \\
f_{b}
\end{array}\right] } & =\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\dot{\omega}_{b} \\
\dot{v}_{b}
\end{array}\right]+\left[\begin{array}{cc}
{\left[\omega_{b}\right]} \\
0 & 0 \\
0 & {\left[\omega_{b}\right.}
\end{array}\right]\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{l}
\omega_{b} \\
v_{b}
\end{array}\right] \\
{[v] v } & =v \times v=0 \text { and }[v]^{\mathrm{T}}=-[v] \\
{\left[\begin{array}{c}
m_{b} \\
f_{b}
\end{array}\right] } & =\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\dot{\omega}_{b} \\
\dot{v}_{b}
\end{array}\right]+\left[\begin{array}{cc}
\left.\omega_{b}\right] & {\left[v_{b}\right]} \\
0 & {\left[\omega_{b}\right]}
\end{array}\right]\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\dot{\omega}_{b} \\
\dot{v}_{b}
\end{array}\right]-\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & 0 \\
{\left[v_{b}\right]} & {\left[\omega_{b}\right]}
\end{array}\right]\left[\begin{array}{cc}
\mathcal{I}_{b} & 0 \\
0 & \mathfrak{m} I
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]
\end{aligned}
$$

## Twist-Wrench Formulation

Body twist $\quad \mathcal{V}_{b}=\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]$ Body wrench $\quad \mathcal{F}_{b}=\left[\begin{array}{c}m_{b} \\ f_{b}\end{array}\right]$
spatial inertia matrix $\quad \mathcal{G}_{b} \in \mathbb{R}^{6 \times 6} \quad \mathcal{G}_{b}=\left[\begin{array}{cc}\mathcal{I}_{b} & 0 \\ 0 & \mathfrak{m} I\end{array}\right]$

$$
\text { kinetic energy }=\frac{1}{2} \omega_{b}^{\mathrm{T}} \mathcal{I}_{b} \omega_{b}+\frac{1}{2} \mathfrak{m} v_{b}^{\mathrm{T}} v_{b}=\frac{1}{2} \mathcal{V}_{b}^{\mathrm{T}} \mathcal{G}_{b} \mathcal{V}_{b}
$$

spatial momentum $\mathcal{P}_{b} \in \mathbb{R}^{6} \mathcal{P}_{b}=\left[\begin{array}{c}\mathcal{I}_{b} \omega_{b} \\ \mathfrak{m} v_{b}\end{array}\right]=\left[\begin{array}{cc}\mathcal{I}_{b} & 0 \\ 0 & \mathfrak{m} I\end{array}\right]\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]=\mathcal{G}_{b} \mathcal{V}_{b}$

## Twist-Wrench Formulation

- Lie bracket of two twists $\mathcal{V}_{1}=\left(\omega_{1}, v_{1}\right)$ and $\mathcal{V}_{2}=\left(\omega_{2}, v_{2}\right)$

$$
\begin{gathered}
{\left[\begin{array}{cc}
{\left[\omega_{1}\right]} & 0 \\
{\left[v_{1}\right]} & {\left[\omega_{1}\right]}
\end{array}\right]\left[\begin{array}{c}
\omega_{2} \\
v_{2}
\end{array}\right]=\left[\operatorname{ad}_{\mathcal{V}_{1}}\right] \mathcal{V}_{2}=\operatorname{ad}_{\mathcal{V}_{1}}\left(\mathcal{V}_{2}\right) \in \mathbb{R}^{6}} \\
{\left[\operatorname{ad}_{\mathcal{V}}\right]=\left[\begin{array}{cc}
{[\omega]} & 0 \\
{[v]} & {[\omega]}
\end{array}\right] \in \mathbb{R}^{6 \times 6}}
\end{gathered}
$$

## Twist-Wrench Formulation

- Dynamic equations for a single rigid body

$$
\begin{aligned}
\mathcal{F}_{b} & =\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\operatorname{ad}_{\mathcal{V}_{b}}^{\mathrm{T}}\left(\mathcal{P}_{b}\right) \\
& =\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\left[\operatorname{ad}_{\mathcal{V}_{b}}\right]^{\mathrm{T}} \mathcal{G}_{b} \mathcal{V}_{b}
\end{aligned}
$$

- Moment equation for a rigid body

$$
m_{b}=\mathcal{I}_{b} \dot{\omega}_{b}-\left[\omega_{b}\right]^{\mathrm{T}} \mathcal{I}_{b} \omega_{b}
$$

## Dynamics in Other Frames

- The kinetic energy is independent of frames

$$
\begin{array}{rlr}
\frac{1}{2} \mathcal{V}_{a}^{\mathrm{T}} \mathcal{G}_{a} \mathcal{V}_{a} & =\frac{1}{2} \mathcal{V}_{b}^{\mathrm{T}} \mathcal{G}_{b} \mathcal{V}_{b} & {\left[\operatorname{Ad}_{T}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right] \in \mathbb{R}^{6 \times 6}} \\
& =\frac{1}{2}\left(\left[\operatorname{Ad}_{T_{b a}}\right] \mathcal{V}_{a}\right)^{\mathrm{T}} \mathcal{G}_{b}\left[\operatorname{Ad}_{T_{b a}}\right] \mathcal{V}_{a} & \\
& =\frac{1}{2} \mathcal{V}_{a}^{\mathrm{T}} \underbrace{\left[\operatorname{Ad}_{T_{b a}}\right]^{\mathrm{T}} \mathcal{G}_{b}\left[\operatorname{Ad}_{T_{b a}}\right]}_{\mathcal{G}_{a}} \mathcal{V}_{a} ; &
\end{array}
$$

- The spatial inertia matrix $\mathcal{G}_{a}=\left[\mathrm{Ad}_{T_{b a}}\right]^{\mathrm{T}} \mathcal{G}_{b}\left[\mathrm{Ad}_{T_{b a}}\right]$
- Equations of motion in frame \{a\}

$$
\mathcal{F}_{a}=\mathcal{G}_{a} \dot{\mathcal{V}}_{a}-\left[\operatorname{ad}_{\mathcal{V}_{a}}\right]^{\mathrm{T}} \mathcal{G}_{a} \mathcal{V}_{a}
$$

## Summary

- Dynamics of a single rigid body
- Linear dynamics
- Rotational dynamics

$$
\begin{aligned}
\mathcal{F}_{b} & =\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\operatorname{ad}_{\mathcal{V}_{b}}^{\mathrm{T}}\left(\mathcal{P}_{b}\right) \\
& =\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\left[\operatorname{ad}_{\mathcal{V}_{b}}\right]^{\mathrm{T}} \mathcal{G}_{b} \mathcal{V}_{b}
\end{aligned}
$$

## Further Reading

- Chapter 8 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.

