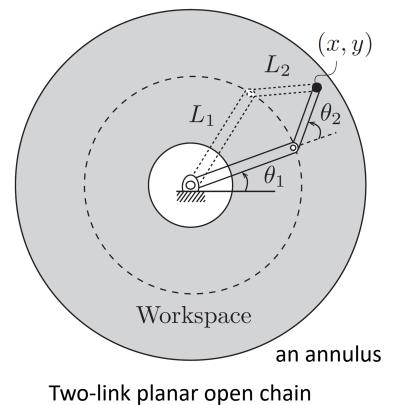
CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

NIN

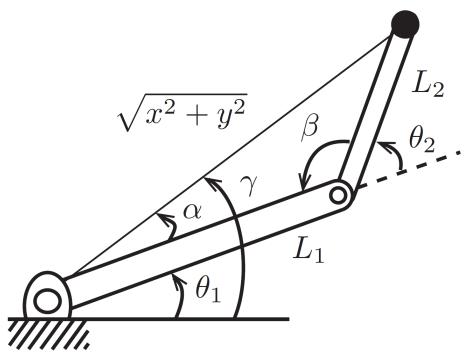
- For a n degree-of-freedom open chain with forward kinematics $T(\theta) \quad \theta \in \mathbb{R}^n$
- Given a homogenous transformation $X \in SE(3)$
- Find solutions heta such that T(heta) = X



Forward kinematics

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) \\ L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2) \end{bmatrix}$$

 $\begin{array}{ll} \text{Assuming } L_1 > L_2 \\ \text{Give } \left(x,y \right) & \begin{array}{l} \text{There can be zero, one,} \\ \text{or two solutions for } \left(\theta_1, \theta_2 \right) \end{array} \end{array}$



Two-link planar open chain

Law of cosines $c^2 = a^2 + b^2 - 2ab\cos C$

$$L_1^2 + L_2^2 - 2L_1L_2\cos\beta = x^2 + y^2$$

$$\beta = \cos^{-1} \left(\frac{L_1^2 + L_2^2 - x^2 - y^2}{2L_1 L_2} \right)$$

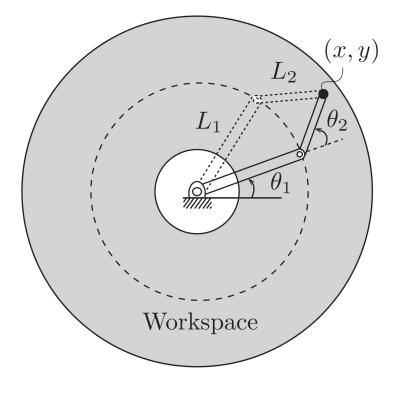
$$\alpha = \cos^{-1} \left(\frac{x^2 + y^2 + L_1^2 - L_2^2}{2L_1\sqrt{x^2 + y^2}} \right)$$

$$\gamma = \operatorname{atan2}(y, x) \quad (-\pi, \pi]$$

righty solution $\theta_1 = \gamma - \alpha, \qquad \theta_2 = \pi - \beta$ lefty solution $\theta_1 = \gamma + \alpha$,

$$\theta_2 = \beta - \pi$$

- IK can have multiple solutions
- FK only has a single solution
- Find solutions θ such that $T(\theta) = X$
- Finding the roots of a nonlinear equation



Analytic Inverse Kinematics

Newton-Raphson Method

- Solve $\ g(heta) = 0$ $\ g: \mathbb{R} o \mathbb{R}$ differentiable
- Initial guess $\, heta^0 \,$
- Taylor expansion

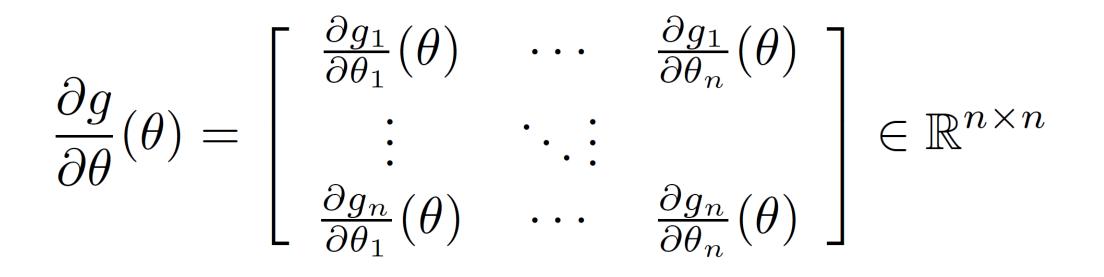
$$g(\theta) = g(\theta^{0}) + \frac{\partial g}{\partial \theta}(\theta^{0})(\theta - \theta^{0}) + \text{higher-order terms (h.o.t)}$$

set $g(\theta) = 0$ $\theta = \theta^{0} - \left(\frac{\partial g}{\partial \theta}(\theta^{0})\right)^{-1} g(\theta^{0})$

$$\theta^{k+1} = \theta^k - \left(\frac{\partial g}{\partial \theta}(\theta^k)\right)^{-1} g(\theta^k)$$

Newton-Raphson Method

• When g is multi-dimensional $g: \mathbb{R}^n \to \mathbb{R}^n$



- Forward kinematics $x = f(\theta)$ $f: \mathbb{R}^n \to \mathbb{R}^m$
- Desired end-effector coordinates ${\mathcal X}_d$
- Objective function for the Newton-Raphson method

$$g(\theta) = x_d - f(\theta)$$

• Goal

$$g(\theta_d) = x_d - f(\theta_d) = 0$$

• Initial guess $heta^0$

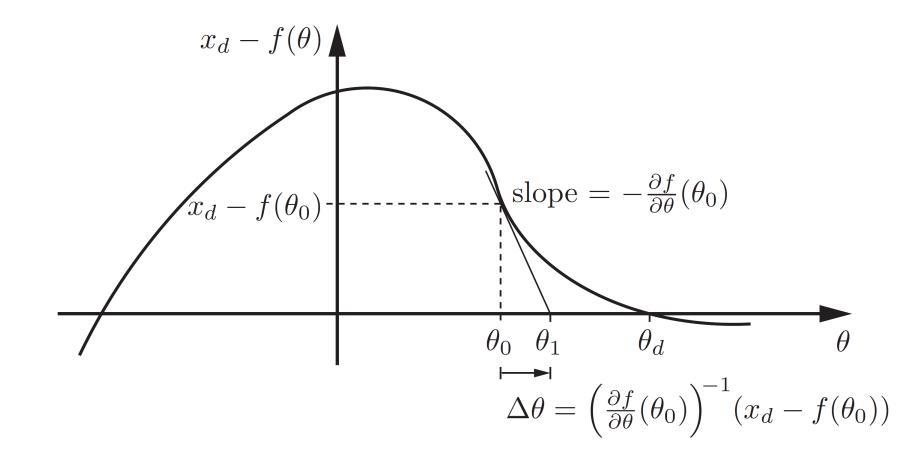
• Taylor expansion

$$x_d = f(\theta_d) = f(\theta^0) + \frac{\partial f}{\partial \theta} \Big|_{\theta^0} \underbrace{(\theta_d - \theta^0)}_{\Delta \theta} + \text{h.o.t.},$$

 $J(heta^0) \in \mathbb{R}^{m imes n}$ Jacobian

$$J(\theta^0)\Delta\theta = x_d - f(\theta^0)$$

Whe $J(heta^0)$ is square and invertible $\Delta heta = J^{-1}(heta^0) \left(x_d - f(heta^0)
ight)$



• When J is not invertible, use pseudoinverse J^{\dagger}

$$Jy = z$$
 $J \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^n$, and $z \in \mathbb{R}^m$
 $y^* = J^{\dagger}z$

 $J^{\dagger} = J^{\mathrm{T}} (JJ^{\mathrm{T}})^{-1} \quad \text{if } J \text{ is fat, } n > m \text{ (called a right inverse since } JJ^{\dagger} = I)$ $J^{\dagger} = (J^{\mathrm{T}}J)^{-1}J^{\mathrm{T}} \quad \text{if } J \text{ is tall, } n < m \text{ (called a left inverse since } J^{\dagger}J = I).$

$$\Delta \theta = J^{\dagger}(\theta^{0}) \left(x_{d} - f(\theta^{0}) \right)$$

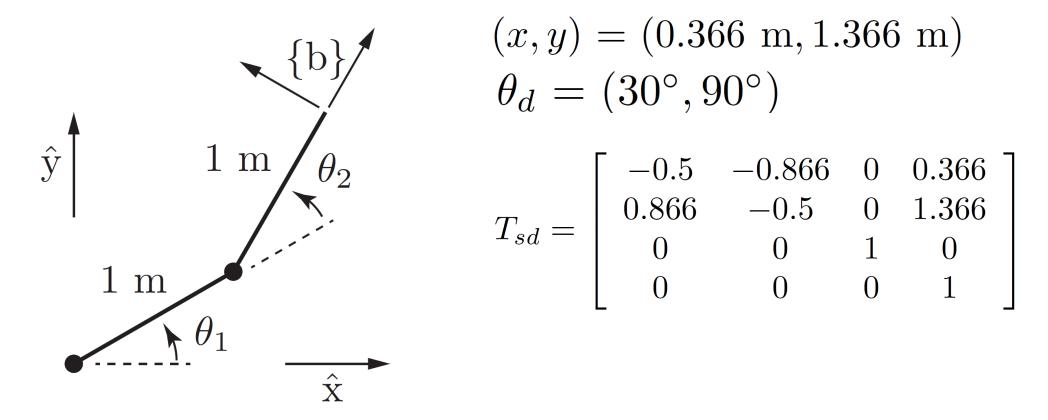
- How to achieve a desired end-effector configuration $T_{sd} \in SE(3)$
- Current configuration $T_{sb}(heta^i)$
- Desired configuration $T_{bd}(\theta^i) = T_{sb}^{-1}(\theta^i)T_{sd} = T_{bs}(\theta^i)T_{sd}$

• Body twist
$$[\mathcal{V}_b] = \log T_{bd}(\theta^i)$$

• Updating rule

$$\theta^{i+1} = \theta^i + J_b^{\dagger}(\theta^i)\mathcal{V}_b$$

Numerical Inverse Kinematics



A 2R robot

Numerical Inverse Kinematics

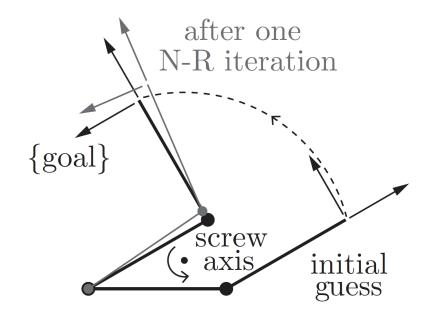
 $\hat{\mathbf{x}}$

 Forward kinematics $M = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathcal{B}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \end{bmatrix} \quad \mathcal{B}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ 1 m ŷ θ_2 • Initial guess $\theta^0 = (0, 30^\circ)$ 1 m

Yu Xiang

Numerical Inverse Kinematics

 $(\omega_{zb}, v_{xb}, v_{yb})$



i	$(heta_1, heta_2)$	(x,y)	$\mathcal{V}_b = (\omega_{zb}, v_{xb}, v_{yb})$	$\ \omega_b\ $	$\ v_b\ $
0	$(0.00, 30.00^\circ)$	(1.866, 0.500)	(1.571, 0.498, 1.858)	1.571	1.924
1	$(34.23^{\circ}, 79.18^{\circ})$	(0.429, 1.480)	(0.115, -0.074, 0.108)	0.115	0.131
2	$(29.98^{\circ}, 90.22^{\circ})$	(0.363, 1.364)	(-0.004, 0.000, -0.004)	0.004	0.004
3	$(30.00^\circ, 90.00^\circ)$	(0.366, 1.366)	(0.000, 0.000, 0.000)	0.000	0.000

Inverse Velocity Kinematics

- Find the joint velocity $\dot{\theta}$ to follow a desired end-effector trajectory $T_{sd}(t)$
- Method 1: uses inverse kinematics to compute $\theta_d(k\Delta t)$

Joint velocity
$$\dot{\theta} = \left(\theta_d(k\Delta t) - \theta((k-1)\Delta t)\right)/\Delta t$$

interval
$$[(k-1)\Delta t, k\Delta t]$$

• Method 2: uses $\ J\dot{ heta} \,=\, \mathcal{V}_d$

$$\dot{\theta} = J^{\dagger}(\theta)\mathcal{V}_d$$

Body twist $T_{sd}^{-1}(t)\dot{T}_{sd}(t)$ Spatial twist $\dot{T}_{sd}(t)T_{sd}^{-1}(t)$

Summary

- Inverse kinematics
- Newton-Raphson Method
- Numerical Inverse Kinematics Algorithm

Further Reading

 Chapter 6 and Appendix D in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.