Velocity Kinematics

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

Forward Kinematics

- Forward kinematics of a robot: calculation of the position and orientation of its end-effector from its joint coordinates θ
- Recall robot links and joints

$$
\begin{gathered}
T_{04}=T_{01} T_{12} T_{23} T_{34} \\
T_{04}=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} M
\end{gathered}
$$

Velocity Kinematics

- Given joint positions and velocities $\theta \in \mathbb{R}^{n} \quad \dot{\theta}$
- Compute the twist of the end-effector
- Angular velocity and linear velocity
- A screw axis is a normalized twist

$$
\mathcal{V}_{b}=\underset{\text { Body twist }}{\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]} \in \mathbb{R}^{6} \quad \mathcal{V}_{s}=\underset{\text { Spatial twist }}{\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right]} \in \mathbb{R}^{6}
$$

Gradients

How to compute gradient?

$$
L(\mathbf{y})_{\text {scalar }} \quad \mathbf{y}: m \times 1
$$

$$
\frac{\partial L}{\partial \mathbf{y}}\left[\begin{array}{llll}
\frac{\partial L}{y_{1}} & \frac{\partial L}{y_{2}} & \ldots & \frac{\partial L}{y_{m}}
\end{array}\right]
$$

$$
1 \times m
$$

$$
\begin{aligned}
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{c}
\nabla f_{1}(\mathbf{x}) \\
\nabla f_{2}(\mathbf{x}) \\
\ldots \\
\nabla f_{m}(\mathbf{x})
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial}{\partial \mathbf{x}} f_{1}(\mathbf{x}) \\
\frac{\partial}{\partial \mathbf{x}} f_{2}(\mathbf{x}) \\
\cdots \\
\frac{\partial}{\partial \mathbf{x}} f_{m}(\mathbf{x})
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial}{\partial x_{1}} f_{1}(\mathbf{x}) \frac{\partial}{\partial x_{2}} f_{1}(\mathbf{x}) & \ldots & \frac{\partial}{\partial x_{n}} f_{1}(\mathbf{x}) \\
\frac{\partial}{\partial x_{1}} f_{2}(\mathbf{x}) \frac{\partial}{\partial x_{2}} f_{2}(\mathbf{x}) & \ldots & \frac{\partial}{\partial x_{n}} f_{2}(\mathbf{x}) \\
\frac{\partial}{\partial x_{1}} f_{m}(\mathbf{x}) \frac{\partial}{\partial x_{2}} f_{m}(\mathbf{x}) & \ldots & \frac{\partial}{\partial x_{n}} f_{m}(\mathbf{x})
\end{array}\right] \\
& \text { Jacobian matrix }
\end{aligned}
$$

Jacobian

- Assume end-effector configuration $x \in \mathbb{R}^{m}$
- End-effector velocity $\quad \dot{x}=d x / d t \in \mathbb{R}^{m}$
- Forward kinematics $x(t)=f(\theta(t)) \quad \theta \in \mathbb{R}^{n}$ Joint variable
- Chain rule

$$
\begin{array}{rlrl}
\dot{x} & =\frac{\partial f(\theta)}{\partial \theta} \frac{d \theta(t)}{d t}=\frac{\partial f(\theta)}{\partial \theta} \dot{\theta} & & J(\theta) \in \mathbb{R}^{m \times n} \quad \text { Jacobian } \\
& =J(\theta) \dot{\theta}, & \dot{\theta} \quad \text { Joint velocity }
\end{array}
$$

Jacobian

Forward kinematics

Jacobian

a 2 R planar open chain

$$
v_{\mathrm{tip}}=J_{1}(\theta) \dot{\theta}_{1}+J_{2}(\theta) \dot{\theta}_{2}
$$

$$
J_{1}(\theta) \text { and } J_{2}(\theta) \begin{aligned}
& \text { Are not colinear, } v \text { can be any } \\
& \text { direction in the } x-y \text { plane }
\end{aligned}
$$

$$
J_{1}(\theta) \text { and } J_{2}(\theta) \quad \text { Depends on theta }
$$

$$
\theta_{2} \text { is } 0^{\circ} \text { or } 180^{\circ}
$$

$$
J_{1}(\theta) \text { and } J_{2}(\theta) \text { Are colinear }
$$

Singularities: where the robot tip is unable to generate velocities in certain directions.

Jacobian

$$
v_{\text {tip }}=J_{1}(\theta) \dot{\theta}_{1}+J_{2}(\theta) \dot{\theta}_{2}
$$

$$
L_{1}=L_{2}=1
$$

$$
\theta=(0, \pi / 4) \quad J\left(\left[\begin{array}{c}
0 \\
\pi / 4
\end{array}\right]\right)=\left[\begin{array}{cc}
-0.71 & -0.71 \\
1.71 & 0.71
\end{array}\right]
$$

a $2 R$ planar open chain

$$
\theta=(0,3 \pi / 4) \quad J\left(\left[\begin{array}{c}
0 \\
3 \pi / 4
\end{array}\right]\right)=\left[\begin{array}{cc}
-0.71 & -0.71 \\
0.29 & -0.71
\end{array}\right]
$$

Jacobian

- Mapping of speed

Jacobian

- Mapping of speed

$$
\dot{x}=J(\theta) \dot{\theta}
$$

Singularity: manipulability ellipsoid becomes a line

Jacobian and Statics

- Suppose that an external force is applied to the robot tip. What are the joint torques required to resist this external force?
- A conservation of power argument

$$
\begin{array}{rll}
f_{\text {tip }}^{\mathrm{T}} v_{\text {tip }}=\tau^{\mathrm{T}} \dot{\theta} & v_{\text {tip }}=J(\theta) \dot{\theta} & f_{\text {tip }}^{\mathrm{T}} J(\theta) \dot{\theta}=\tau^{\mathrm{T}} \dot{\theta} \\
\text { joint torque } & \tau=J^{\mathrm{T}}(\theta) f_{\text {tip }} &
\end{array}
$$

Tip force $\quad f_{\text {tip }}=\left((J(\theta))^{\mathrm{T}}\right)^{-1} \tau=J^{-\mathrm{T}}(\theta) \tau$

Tip Force

$$
f_{\text {tip }}=\left((J(\theta))^{\mathrm{T}}\right)^{-1} \tau=J^{-\mathrm{T}}(\theta) \tau
$$

Force Ellipsoid

$$
f_{\text {tip }}=\left((J(\theta))^{\mathrm{T}}\right)^{-1} \tau=J^{-\mathrm{T}}(\theta) \tau
$$

"iso-effort" contour

Manipulability Ellipsoids and Force Ellipsoids

If it is easy to generate a tip velocity in a given direction then it is difficult to generate a force in that same direction, and vice versa.

Manipulator Jacobian

- Space Jacobian $\quad \mathcal{V}_{s}=J_{s}(\theta) \dot{\theta}$

Spatial twist

- Forward kinematics

$$
\begin{aligned}
& T\left(\theta_{1}, \ldots, \theta_{n}\right)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M \quad\left[\mathcal{V}_{s}\right]=\dot{T} T^{-1} \\
& \dot{T}=\left(\frac{d}{d t} e^{\left[\mathcal{S}_{1}\right] \theta_{1}}\right) \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M+e^{\left[\mathcal{S}_{1}\right] \theta_{1}}\left(\frac{d}{d t} e^{\left[\mathcal{S}_{2}\right] \theta_{2}}\right) \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M+\cdots \\
& =\left[\mathcal{S}_{1}\right] \dot{\theta}_{1} e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M+e^{\left[\mathcal{S}_{1}\right] \theta_{1}}\left[\mathcal{S}_{2}\right] \dot{\theta}_{2} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} \cdots e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M+\cdots \\
& \quad d\left(e^{A \theta}\right) / d t=A e^{A \theta} \dot{\theta}=e^{A \theta} A \dot{\theta}
\end{aligned}
$$

$$
T^{-1}=M^{-1} e^{-\left[\mathcal{S}_{n}\right] \theta_{n}} \cdots e^{-\left[\mathcal{S}_{1}\right] \theta_{1}}
$$

Proposition 3.10

Space Jacobian

$$
\left[\mathcal{V}_{s}\right]=\dot{T} T^{-1}
$$

$$
\begin{aligned}
& \mathcal{V}^{\prime}=\operatorname{Ad}_{T}(\mathcal{V}) \\
& {\left[\mathcal{V}^{\prime}\right]=T[\mathcal{V}] T^{-1}}
\end{aligned}
$$

$$
\left[\mathcal{V}_{s}\right]=\left[\mathcal{S}_{1}\right] \dot{\theta}_{1}+e^{\left[\mathcal{S}_{1}\right] \theta_{1}}\left[\mathcal{S}_{2}\right] e^{-\left[\mathcal{S}_{1}\right] \theta_{1}} \dot{\theta}_{2}+e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}}\left[\mathcal{S}_{3}\right] e^{-\left[\mathcal{S}_{2}\right] \theta_{2}} e^{-\left[\mathcal{S}_{1}\right] \theta_{1}} \dot{\theta}_{3}+\cdots
$$

Adjoint mapping

$$
\begin{gathered}
\mathcal{V}_{s}=\underbrace{\mathcal{S}_{1}}_{J_{s 1}} \dot{\theta}_{1}+\underbrace{\operatorname{Ad}_{e^{\left[\mathcal{S}_{1}\right] \theta_{1}}}\left(\mathcal{S}_{2}\right)}_{J_{s 2}} \dot{\theta}_{2}+\underbrace{\operatorname{Ad}_{e^{\left[s_{1}\right] \theta_{1} e^{\left[\mathcal{S}_{2}\right] \theta_{2}}}}\left(\mathcal{S}_{3}\right)}_{J_{s 3}} \dot{\theta}_{3}+\cdots \\
\mathcal{V}_{s}=J_{s 1} \dot{\theta}_{1}+J_{s 2}(\theta) \dot{\theta}_{\underline{2}}+\cdots+J_{s n}(\theta) \dot{\theta}_{n} \\
J_{s i}(\theta)=\left(\omega_{s i}(\theta), v_{s i}(\theta)\right) \quad \theta \in \mathbb{R}^{n}
\end{gathered}
$$

Space Jacobian

$$
\begin{aligned}
\text { Spatial twist } \mathcal{V}_{s} & =\left[\begin{array}{llll}
J_{s 1} & J_{s 2}(\theta) & \cdots & J_{s n}(\theta)
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right] \\
& =J_{s}(\theta) \dot{\theta}
\end{aligned}
$$

$$
\begin{aligned}
& J_{s}(\theta) \in \mathbb{R}^{6 \times n} \quad \dot{\theta} \in \mathbb{R}^{n} \\
& J_{s i}(\theta)=\operatorname{Ad}_{e^{\left[\mathcal{S}_{1}\right] \theta_{1} \ldots e^{\left[\mathcal{S}_{i-1}\right] \theta_{i-1}}}}\left(\mathcal{S}_{i}\right) \quad \text { ith column } \quad i=2, \ldots, n \\
& J_{s 1}=\mathcal{S}_{1}
\end{aligned}
$$

Space Jacobian

- The ith column of the space Jacobian

$$
J_{s i}(\theta)=\operatorname{Ad}_{e^{\left[\mathcal{S}_{1}\right] \theta_{1} \ldots e^{\left[\mathcal{S}_{i-1}\right] \theta_{i-1}}}}\left(\mathcal{S}_{i}\right)
$$

$$
\operatorname{Ad}_{T_{i-1}}\left(\mathcal{S}_{i}\right) \quad T_{i-1}=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{i-1}\right] \theta_{i-1}}
$$

$J_{s i}(\theta)$ is simply the screw vector describing joint axis i, expressed in fixed-frame coordinates, as a function of the joint variables $\theta_{1}, \ldots, \theta_{i-1}$.

Space Jacobian

a spatial RRRP chain

$$
\omega_{s 4}=(0,0,0) \quad v_{s 4}=(0,0,1)
$$

Space Jacobian

Body Jacobian

- End-effect twist in the end-effector frame $\left[\mathcal{V}_{b}\right]=T^{-1} \dot{T}$
- Forward kinematics

$$
\begin{array}{rl}
T(\theta) & =M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} e^{\left[\mathcal{B}_{2}\right] \theta_{2}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}} \\
\dot{T}= & M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{n-1}\right] \theta_{n-1}}\left(\frac{d}{d t} e^{\left[\mathcal{B}_{n}\right] \theta_{n}}\right) \\
& +M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots\left(\frac{d}{d t} e^{\left[\mathcal{B}_{n-1}\right] \theta_{n-1}}\right) e^{\left[\mathcal{B}_{n}\right] \theta_{n}}+\cdots \\
=M & M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}}\left[\mathcal{B}_{n}\right] \dot{\theta}_{n} \\
& +M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{n-1}\right] \theta_{n-1}\left[\mathcal{B}_{n-1}\right] e^{\left[\mathcal{B}_{n}\right] \theta_{n}} \dot{\theta}_{n-1}+\cdots} \\
& +M e^{\left[\mathcal{B}_{1}\right] \theta_{1}}\left[\mathcal{B}_{1}\right] e^{\left[\mathcal{B}_{2}\right] \theta_{2}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}} \dot{\theta}_{1} . \quad T^{-1}=e^{-\left[\mathcal{B}_{n}\right] \theta_{n}} \cdots e^{-\left[\mathcal{B}_{1}\right] \theta_{1}} M^{-1}
\end{array}
$$

Body Jacobian

$$
\begin{aligned}
& {\left[\mathcal{V}_{b}\right]=T^{-1} \dot{T}} \\
& {\left[\mathcal{V}_{b}\right]=\left[\mathcal{B}_{n}\right] \dot{\theta}_{n}+e^{-\left[\mathcal{B}_{n}\right] \theta_{n}}\left[\mathcal{B}_{n-1}\right] e^{\left[\mathcal{B}_{n}\right] \theta_{n}} \dot{\theta}_{n-1}+\cdots} \\
& +e^{-\left[\mathcal{B}_{n}\right] \theta_{n}} \cdots e^{-\left[\mathcal{B}_{2}\right] \theta_{2}}\left[\mathcal{B}_{1}\right] e^{\left[\mathcal{B}_{2}\right] \theta_{2}} \cdots e^{\left[\mathcal{B}_{n}\right] \theta_{n}} \dot{\theta}_{1} \\
& \mathcal{V}_{b}=\underbrace{\mathcal{B}_{n}}_{J_{b n}} \dot{\theta}_{n}+\underbrace{\operatorname{Ad}_{e^{-\left[\mathcal{B}_{n}\right] \theta_{n}}}\left(\mathcal{B}_{n-1}\right)}_{J_{b, n-1}} \dot{\theta}_{n-1}+\cdots+\underbrace{\operatorname{Ad}_{e^{-\left[\mathcal{B}_{n}\right] \theta_{n} \ldots e^{-\left[\mathcal{B}_{2}\right] \theta_{2}}}}\left(\mathcal{B}_{1}\right)}_{J_{b 1}} \dot{\theta}_{1} \\
& \mathcal{V}_{b}=J_{b 1}(\theta) \dot{\theta}_{1}+\cdots+J_{b n-1}(\theta) \dot{\theta}_{n-1}+J_{b n} \dot{\theta}_{n} \\
& J_{b i}(\theta)=\left(\omega_{b i}(\theta), v_{b i}(\theta)\right)
\end{aligned}
$$

Body Jacobian

$$
\mathcal{V}_{b}=\left[\begin{array}{llll}
J_{b 1}(\theta) & \cdots & J_{b n-1}(\theta) & J_{b n}
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right]=J_{b}(\theta) \dot{\theta}
$$

$$
\text { body Jacobian } J_{b}(\theta) \in \mathbb{R}^{6 \times n} \quad \dot{\theta} \in \mathbb{R}^{n}
$$

$$
J_{b i}(\theta)=\operatorname{Ad}_{e^{-\left[\mathcal{B}_{n}\right] \theta_{n} \ldots e^{-\left[\mathcal{B}_{i+1}\right] \theta_{i+1}}}\left(\mathcal{B}_{i}\right) \quad i=n-1, \ldots, 1}
$$

$$
J_{b n}=\mathcal{B}_{n} \quad \begin{aligned}
& \text { The screw vector for joint axis i, expressed in the coordinates } \\
& \text { of the ond offoctor freme }
\end{aligned}
$$ of the end-effector frame rather than those of the fixed frame

Relationship between the Space and Body Jacobian

- Fixed frame $\{\mathrm{s}\}$, body frame $\{b\}$
- Forward kinematics $T_{s b}(\theta)$
- Twist of the end-effector frame

$$
\begin{gathered}
{\left[\mathcal{V}_{s}\right]=\dot{T}_{s b} T_{s b}^{-1}, \quad \mathcal{V}_{s}=J_{s}(\theta) \dot{\theta}, \quad \mathcal{V}_{s}=\operatorname{Ad}_{T_{s b}}\left(\mathcal{V}_{b}\right)} \\
{\left[\mathcal{V}_{b}\right]=T_{s b}^{-1} \dot{T}_{s b}, \quad \mathcal{V}_{b}=J_{b}(\theta) \dot{\theta} . \quad} \\
\operatorname{Ad}_{T_{s b}}\left(\mathcal{V}_{b}\right)=J_{s}(\theta) \dot{\theta} \quad \operatorname{Ad}_{T_{b s}}\left(\operatorname{Ad}_{T_{s b}}\left(\mathcal{V}_{b}\right)\right)=\operatorname{Ad}_{T_{b s} T_{s b}}\left(\mathcal{V}_{b}\right)=\mathcal{V}_{b}=\operatorname{Ad}_{T_{b s}}\left(J_{s}(\theta) \dot{\theta}\right) \\
J_{b}(\theta)=\operatorname{Ad}_{T_{b s}}\left(J_{s}(\theta)\right)=\left[\operatorname{Ad}_{T_{b s}}\right] J_{s}(\theta) \\
J_{s}(\theta)=\operatorname{Ad}_{T_{s b}}\left(J_{b}(\theta)\right)=\left[\operatorname{Ad}_{T_{s b}}\right] J_{b}(\theta)
\end{gathered}
$$

Summary

- Velocity kinematics
- Jacobian
- Space Jacobian
- Body Jacobian

Further Reading

- Chapter 5 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.
- T. Yoshikawa. Manipulability of robotic mechanisms. International Journal of Robotics Research, 4(2):3-9, 1985.

