Forward Kinematics and Product of Exponentials Formula

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

NIN

Forward Kinematics

- Forward kinematics of a robot: calculation of the position and orientation of its end-effector from its joint coordinates heta
- Recall robot links and joints

Forward Kinematics

Forward kinematics of a 3R planar open chain.

- General cases
 - Attaching frames to links
 - Using homogeneous transformations

$$T_{04} = T_{01}T_{12}T_{23}T_{34}$$

$$= \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & 0\\ \sin \theta_1 & \cos \theta_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} T_{12} = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & 0 & L_1\\ \sin \theta_2 & \cos \theta_2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$T_{12} = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & 0 & L_1\\ \sin \theta_2 & \cos \theta_2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} T_{12} = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & 0 & L_1\\ \sin \theta_2 & \cos \theta_2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $T_{i-1,i}$ Depends only on the joint variable $\, heta_i$

9/28/2022

Forward Kinematics

Forward kinematics of a 3R planar open chain.

- A different approach
- Define M to the position and orientation of frame {4} when all the joint angles are zeros ("home" or "zero" position of the robot)

$$M = \begin{bmatrix} 1 & 0 & 0 & L_1 + L_2 + L_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{04} = e^{[\mathcal{S}_1]\theta_1} e^{[\mathcal{S}_2]\theta_2} e^{[\mathcal{S}_3]\theta_3} M$$

a product of matrix exponentials (does not use any frame references, only {0} and M)

- Each link apply a screw motion to all the outward links
- Base frame {s}
- End-effector frame {b}

 $M \in SE(3)$

{b} in {s} when all the joint values are zeros

$$T = e^{[\mathcal{S}_n]\theta_n} M$$

{b} in {s} when joint n with value $heta_n$

$$T(\theta) = e^{[\mathcal{S}_1]\theta_1} \cdots e^{[\mathcal{S}_{n-1}]\theta_{n-1}} e^{[\mathcal{S}_n]\theta_n} M$$

Joint values $(\theta_1, \dots, \theta_n)$

- Space form of the product of exponentials formula
- Unlike D-H representation, no link reference frames need to be defined

$$T(\theta) = e^{[\mathcal{S}_1]\theta_1} e^{[\mathcal{S}_2]\theta_2} e^{[\mathcal{S}_3]\theta_3} M$$
$$M = \begin{bmatrix} 0 & 0 & 1 & L_1 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & -L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $S_{1} = (\omega_{1}, v_{1}) \quad \omega_{1} = (0, 0, 1) \quad v_{1} = (0, 0, 0)$ $\omega_{2} = (0, -1, 0) \quad q_{2} = (L_{1}, 0, 0)$ $v_{2} = -\omega_{2} \times q_{2} = (0, 0, -L_{1})$ $\omega_{3} = (1, 0, 0) \quad q_{3} = (0, 0, -L_{2})$

$$v_3 = -\omega_3 \times q_3 = (0, -L_2, 0)$$

Cross Product

• Matrix notation

$$\mathbf{a} imes \mathbf{b} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{bmatrix}$$

https://en.wikipedia.org/wiki/Cross_product

A 3R spatial open chain

$S_1]$	=	$ \begin{array}{ccc} 0 & -1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} $	0 0 0 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	[S	[2]	=	$\left[\begin{array}{c} 0\\0\\1\\0\end{array}\right]$	0 0 0 0	$\begin{array}{c} -1 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ -L_1\\ 0\end{array}$	
$S_3]$	_) 0) 0) 1) 0	$\begin{array}{c} 0\\ -1\\ 0\\ 0 \end{array}$	$\begin{array}{c} 0 \\ -L_2 \\ 0 \\ 0 \\ -L_2 \end{array}$								
		i		$\overline{\omega_i}$,			v_i				
		1		(0, 0)	, 1)		(0.	, 0, 0	0)			

-1, 0

(1, 0, 0)

0,

 $\mathbf{2}$

3

 $(0, 0, -L_1)$

 $(0, L_2, 0)$

PoE forward kinematics for the 6R open chain

First three joints are at the same location

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & L_1 + L_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

i	ω_i	v_i
1	(0,0,1)	(0, 0, 0)
2	(1,0,0)	(0, 0, 0)
3	(0,0,0)	(0, 1, 0)
4	(0,1,0)	(0, 0, 0)
5	(1,0,0)	$(0, 0, -L_1)$
6	(0,1,0)	(0, 0, 0)

The RRPRRR spatial open chain

$$M = \begin{bmatrix} -1 & 0 & 0 & L_1 + L_2 \\ 0 & 0 & 1 & W_1 + W_2 \\ 0 & 1 & 0 & H_1 - H_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	ω_i	v_i
1	(0, 0, 1)	(0, 0, 0)
2	(0, 1, 0)	$(-H_1, 0, 0)$
3	(0, 1, 0)	$(-H_1, 0, L_1)$
4	(0, 1, 0)	$(-H_1, 0, L_1 + L_2)$
5	(0, 0, -1)	$(-W_1, L_1 + L_2, 0)$
6	(0, 1, 0)	$(H_2 - H_1, 0, L_1 + L_2)$

Universal Robots' UR5 6R robot arm

$$W_1 = 109 \text{ mm}, W_2 = 82 \text{ mm}, L_1 = 425 \text{ mm}$$

 $L_2 = 392 \text{ mm}, H_1 = 89 \text{ mm} \quad H_2 = 95 \text{ mm}$

$$W_1 = 109 \text{ mm}, W_2 = 82 \text{ mm}, L_1 = 425 \text{ mm}$$

 $L_2 = 392 \text{ mm}, H_1 = 89 \text{ mm} \quad H_2 = 95 \text{ mm}$

$$\theta_2 = -\pi/2$$
 and $\theta_5 = \pi/2$

$$T(\theta) = e^{[S_1]\theta_1} e^{[S_2]\theta_2} e^{[S_3]\theta_3} e^{[S_4]\theta_4} e^{[S_5]\theta_5} e^{[S_6]\theta_6} M$$

= $I e^{-[S_2]\pi/2} I^2 e^{[S_5]\pi/2} I M$
= $e^{-[S_2]\pi/2} e^{[S_5]\pi/2} M$

$$e^{[\mathcal{S}_2]\pi/2} = \begin{bmatrix} 0 & 0 & -1 & 0.089 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0.089 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad e^{[\mathcal{S}_5]\pi/2} = \begin{bmatrix} 0 & 1 & 0 & 0.708 \\ -1 & 0 & 0 & 0.926 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T(\theta) = e^{-[\mathcal{S}_2]\pi/2} e^{[\mathcal{S}_5]\pi/2} M = \begin{bmatrix} 0 & -1 & 0 & 0.095 \\ 1 & 0 & 0 & 0.109 \\ 0 & 0 & 1 & 0.988 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Recall Twists

• Spatial twist (spatial velocity in the space frame)

$$\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix} \in \mathbb{R}^6 \qquad [\mathcal{V}_s] = \begin{bmatrix} [\omega_s] & v_s \\ 0 & 0 \end{bmatrix} = \dot{T}T^{-1} \in se(3)$$

• Relationship

$$\begin{bmatrix} \mathcal{V}_b \end{bmatrix} = T^{-1} \dot{T} \\ = T^{-1} \begin{bmatrix} \mathcal{V}_s \end{bmatrix} T \qquad \begin{bmatrix} \mathcal{V}_s \end{bmatrix} = T \begin{bmatrix} \mathcal{V}_b \end{bmatrix} T^{-1}$$

Recall Adjoint Representations

• The adjoint representation of $T = (R, p) \in SE(3)$

$$[\mathrm{Ad}_T] = \begin{bmatrix} R & 0\\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

• The adjoint map associated with T

$$\mathcal{V}\in \mathbb{R}^6$$
 $\mathcal{V}'=[\operatorname{Ad}_T]\mathcal{V}$ or $\mathcal{V}'=\operatorname{Ad}_T(\mathcal{V})$

$$[\mathcal{V}] \in se(3) \qquad [\mathcal{V}'] = T[\mathcal{V}]T^{-1}$$

Recall Twists

$$\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix} = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} = [\mathrm{Ad}_{T_{sb}}]\mathcal{V}_b$$

$$\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} = \begin{bmatrix} R^{\mathrm{T}} & 0 \\ -R^{\mathrm{T}}[p] & R^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \omega_s \\ v_s \end{bmatrix} = [\mathrm{Ad}_{T_{bs}}]\mathcal{V}_s$$

In general

$$\mathcal{V}_c = [\mathrm{Ad}_{T_{cd}}]\mathcal{V}_d, \qquad \mathcal{V}_d = [\mathrm{Ad}_{T_{dc}}]\mathcal{V}_c$$

- **Proposition** $e^{M^{-1}PM} = M^{-1}e^{P}M$ $Me^{M^{-1}PM} = e^{P}M$
- PoE formula

$$T(\theta) = e^{[\mathcal{S}_{1}]\theta_{1}} \cdots e^{[\mathcal{S}_{n}]\theta_{n}} M$$

$$= e^{[\mathcal{S}_{1}]\theta_{1}} \cdots M e^{M^{-1}[\mathcal{S}_{n}]M\theta_{n}}$$

$$= e^{[\mathcal{S}_{1}]\theta_{1}} \cdots M e^{M^{-1}[\mathcal{S}_{n-1}]M\theta_{n-1}} e^{M^{-1}[\mathcal{S}_{n}]M\theta_{n}}$$

$$= M e^{M^{-1}[\mathcal{S}_{1}]M\theta_{1}} \cdots e^{M^{-1}[\mathcal{S}_{n-1}]M\theta_{n-1}} e^{M^{-1}[\mathcal{S}_{n}]M\theta_{n}}$$

$$= M e^{[\mathcal{B}_{1}]\theta_{1}} \cdots e^{[\mathcal{B}_{n-1}]\theta_{n-1}} e^{[\mathcal{B}_{n}]\theta_{n}},$$

$$[\mathcal{B}_{i}] = M^{-1}[\mathcal{S}_{i}]M \qquad \mathcal{B}_{i} = [\mathrm{Ad}_{M^{-1}}]\mathcal{S}_{i}, \ i = 1, \dots, n$$

Body form of the product of exponentials formula

PoE forward kinematics for the 6R open chain

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	ω_i	v_i
1	(0, 0, 1)	(0, 0, 0)
2	(0, 1, 0)	(0,0,0)
3	(-1,0,0)	(0,0,0)
4	(-1,0,0)	(0,0,L)
5	(-1,0,0)	(0,0,2L)
6	(0, 1, 0)	(0,0,0)

i	ω_i	v_i
1	(0, 0, 1)	(-3L, 0, 0)
2	(0, 1, 0)	(0, 0, 0)
3	(-1,0,0)	(0, 0, -3L)
4	(-1,0,0)	(0, 0, -2L)
5	(-1,0,0)	(0, 0, -L)
6	(0, 1, 0)	(0, 0, 0)

Space form

Body form

Barrett Technology's WAM 7R robot arm at its zero configuration

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_1 + L_2 + L_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\mathcal{B}_i = (\omega_i, v_i)$

i	ω_i	v_i
1	(0, 0, 1)	(0,0,0)
2	(0, 1, 0)	$(L_1 + L_2 + L_3, 0, 0)$
3	(0, 0, 1)	(0,0,0)
4	(0, 1, 0)	$(L_2 + L_3, 0, W_1)$
5	(0, 0, 1)	(0,0,0)
6	(0, 1, 0)	$(L_3, 0, 0)$
7	(0, 0, 1)	(0,0,0)

Barrett Technology's WAM 7R robot arm at its zero configuration

Summary

- Forward kinematics
- Product of Exponentials Formula
 - Space form
 - Body form

Further Reading

• Chapter 4 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.