Exponential Coordinates of Rigid-Body Motions and Wrenches

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

Twists and Screw Axes

- Twist

$$
\mathcal{V}_{b}=\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right] \in \mathbb{R}^{6} \quad \mathcal{V}_{s}=\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right] \in \mathbb{R}^{6}
$$

- A screw axis is a normalized twist

$$
\mathcal{S} \dot{\theta}=\mathcal{V} \quad \mathcal{S}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right] \in \mathbb{R}^{6}
$$

Exponential Coordinates of Rigid-Body Motions

- Chasles-Mozzi theorem: every rigid-body displacement can be expressed as displacement along a fixed screw axis S in space
- Exponential coordinates of a homogeneous transformation T

$$
\begin{array}{ll}
\mathcal{S}=(\omega, v) \quad & \|\omega\|=1 \quad \theta \text { Angle of rotation } \\
& \omega=0 \quad\|v\|=1 \quad \theta \text { Linear distance along the axis }
\end{array}
$$

Exponential Coordinates of Rigid-Body Motions

- Exponential coordinates of a homogeneous transformation T

$$
\begin{aligned}
\exp : & {[\mathcal{S}] \theta \in \operatorname{se}(3) } \\
\log : & \rightarrow \quad T \in S E(3) \\
& T \mathcal{S}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \operatorname{se}(3)
\end{aligned}
$$

Matrix Exponential

$$
\begin{aligned}
e^{[\mathcal{S}] \theta} & =I+[\mathcal{S}] \theta+[\mathcal{S}]^{2} \frac{\theta^{2}}{2!}+[\mathcal{S}]^{3} \frac{\theta^{3}}{3!}+\cdots \\
& =\left[\begin{array}{cc}
e^{[\omega] \theta} & G(\theta) v \\
0 & 1
\end{array}\right] \quad[\mathcal{S}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in s e(3) \\
G(\theta)= & I \theta+[\omega] \frac{\theta^{2}}{2!}+[\omega]^{2} \frac{\theta^{3}}{3!}+\cdots \quad[\omega]^{3}=-[\omega] \\
= & I \theta+\left(\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\frac{\theta^{6}}{6!}-\cdots\right)[\omega]+\left(\frac{\theta^{3}}{3!}-\frac{\theta^{5}}{5!}+\frac{\theta^{7}}{7!}-\cdots\right)[\omega]^{2} \\
= & I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2}
\end{aligned}
$$

Matrix Exponential

$$
\mathcal{S}=(\omega, v) \quad \theta \in \mathbb{R}
$$

If $\|\omega\|=1 \quad e^{[S] \theta}=\left[\begin{array}{cc}e^{[\omega] \theta} & (I \theta+(1-\cos \theta)[\omega] \\ 0 & 1\end{array}\right]$
If $\omega=0$ and $\|v\|=1 \quad e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}I & v \theta \\ 0 & 1\end{array}\right]$

Matrix Logarithm

- Given $(R, p) \in S E(3)$, one can find $\mathcal{S}=(\omega, v)$ and θ

$$
e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]
$$

- Matrix Logarithm of $T=(R, p)$

$$
[\mathcal{S}] \theta=\left[\begin{array}{cc}
{[\omega] \theta} & v \theta \\
0 & 0
\end{array}\right] \in \operatorname{se}(3)
$$

Matrix Logarithm Algorithm

- Given $(R, p) \in S E(3)$, how to find $\mathcal{S}=(\omega, v)$ and θ ?
- If $R=I$ then set $\omega=0, v=p /\|p\|$, and $\theta=\|p\|$
- Otherwise, use the matrix logarithm on $\mathrm{SO}(3)$ to determine ω, θ for R

$$
\begin{gathered}
v=G^{-1}(\theta) p \\
G^{-1}(\theta)=\frac{1}{\theta} I-\frac{1}{2}[\omega]+\left(\frac{1}{\theta}-\frac{1}{2} \cot \frac{\theta}{2}\right)[\omega]^{2}
\end{gathered}
$$

Matrix Exponential and Matrix Logarithm

Matrix Exponential and Matrix Logarithm

Torque

${ }_{\text {poln }} r_{a} \in \mathbb{R}^{3}$
${ }^{\text {Fove }} f_{a} \in \mathbb{R}^{3}$

Torque or Moment

$$
\begin{aligned}
& m_{a} \in \mathbb{R}^{3} \\
& m_{a}=r_{a} \times f_{a}
\end{aligned}
$$

Spatial Force or Wrench

- Merge moment and force in frame $\{\mathrm{a}\}$

$$
\text { Wrench } \quad \mathcal{F}_{a}=\left[\begin{array}{c}
m_{a} \\
f_{a}
\end{array}\right] \in \mathbb{R}^{6}
$$

- If more than one wrenches act on a rigid body, the total wrench is the vector sum of the wrenches
- Pure moment: a wrench with a zero linear component

Wrench in Different Frames

- Power generated by (F, V) are the same

$$
\begin{gathered}
\mathcal{V}_{b}^{\mathrm{T}} \mathcal{F}_{b}=\mathcal{V}_{a}^{\mathrm{T}} \mathcal{F}_{a} \\
\mathcal{V}_{a}=\left[\operatorname{Ad}_{T_{a b}}\right]_{b} \\
\mathcal{V}_{b}^{\mathrm{T}} \mathcal{F}_{b}=\left(\left[\operatorname{Ad}_{T_{a b}}\right)_{b}\right)^{\mathrm{T}} \mathcal{F}_{a} \\
=\mathcal{V}_{b}^{\mathrm{T}}\left[\operatorname{Ad}_{\left.T_{a b}\right]}{ }^{\mathrm{T}} \mathcal{F}_{a} .\right. \\
\mathcal{F}_{b}=\left[\operatorname{Ad}_{\left.T_{a b}\right]} \mathcal{F}_{a}\right. \\
\mathcal{F}_{a}=\left[\operatorname{Ad}_{T_{b a}}\right]^{\mathrm{T}} \mathcal{F}_{b}
\end{gathered}
$$

Wrench Example

A robot hand holding an apple subject to gravity

- Apple mass 0.1 kg
- Gravity g=10 m/s ${ }^{2}$
- Mass of hand 0.5 kg

What is the force and torque measured by the six-axis force-torque sensor between the hand and the robot arm?

- Frame $\{\mathrm{f}\}$ at the sensor
- Frame $\{\mathrm{h}\}$ at the center of mass of hand
- Frame \{a\} at the center of mass of apple
- Gravitational wrench on hand in \{h\}

$$
\mathcal{F}_{h}=(0,0,0,0,-5 \mathrm{~N}, 0)
$$

- Gravitational wrench on apple in $\{a\}$

$$
\mathcal{F}_{a}=(0,0,0,0,0,1 \mathrm{~N})
$$

Wrench Example

$$
\begin{aligned}
& \text { A robot hand holding an apple subject to gravity } \\
& g \quad T_{h f}=\left[\begin{array}{cccc}
1 & 0 & 0 & -0.1 \mathrm{~m} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad T_{a f}=\left[\begin{array}{cccc}
1 & 0 & 0 & -0.25 \mathrm{~m} \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathcal{F}_{f}=\left[\operatorname{Ad}_{T_{h f}}\right]^{\mathrm{T}} \mathcal{F}_{h}+\left[\operatorname{Ad}_{T_{a f}}\right]^{\mathrm{T}} \mathcal{F}_{a} \\
& =\left[\begin{array}{lll}
0 & 0 & -0.5 \mathrm{Nm} 0-5 \mathrm{~N} 0
\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{lll}
0 & 0-0.25 \mathrm{Nm} 0-1 \mathrm{~N} 0
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{lll}
0 & 0 & -0.75 \mathrm{Nm} 0-6 \mathrm{~N} 0
\end{array}\right]^{\mathrm{T}} \text {. }
\end{aligned}
$$

Summary

- Exponential Coordinates of Rigid-Body Motions
- Matrix Logarithm of Rigid-Body Motions
- Torques
- Wrenches

Further Reading

- Chapter 3 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017

