Twists and Screw Axes

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

Homogenous Transformation Matrices

- Consider body frame $\{b\}$ in a fixed frame $\{s\}$
-3D rotation $R \in S O(3)$
- 3D position $p \in \mathbb{R}^{3}$
- Special Euclidean group SE(3) or homogenous transformation matrices

$$
T=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{1} \\
r_{21} & r_{22} & r_{23} & p_{2} \\
r_{31} & r_{32} & r_{33} & p_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Twists

$$
T_{s b}(t)=T(t)=\left[\begin{array}{cc}
R(t) & p(t) \\
0 & 1
\end{array}\right]
$$

- Consider both linear and angular velocities when the rigid-body moves

$$
\text { Recall angular velocity } \mathrm{w}=\hat{\mathrm{w}} \dot{\theta}
$$

$$
\left.\dot{T}=\left[\begin{array}{cc}
\dot{R} & \dot{p} \\
0 & 0
\end{array}\right] \quad \begin{array}{l}
\dot{R} R^{-1}=\left[\omega_{s}\right]
\end{array} \begin{array}{l}
\text { Angular velocity } \\
\text { expressed in }\{s\} \\
R^{-1} \dot{R}=\left[\omega_{b}\right]
\end{array} \begin{array}{l}
\text { Angular velocity } \\
\text { expressed in }\{b\}
\end{array}\right\}
$$

Twists

- Let's compute

$$
\begin{aligned}
T^{-1} \dot{T} & =\left[\begin{array}{cc}
R^{\mathrm{T}} & -R^{\mathrm{T}} p \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\dot{R} & \dot{p} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
R^{\mathrm{T}} \dot{R} & R^{\mathrm{T}} \dot{p} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$R^{\mathrm{T}} \dot{p}=v_{b}$

Twists

- Body twist (spatial velocity in the body frame)

$$
\mathcal{V}_{b}=\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right] \in \mathbb{R}^{6}
$$

matrix representation

$$
T^{-1} \dot{T}=\left[\mathcal{V}_{b}\right]=\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0 & 0
\end{array}\right] \in \operatorname{se}(3)
$$

$$
\left[\omega_{b}\right] \in S O(3) \quad v_{b} \in \mathbb{R}^{3} \quad \text { linear velocity of a point at the origin of }\{b\} \text { expressed in }\{b\}
$$

Twists

- Similarly

$$
\begin{aligned}
\dot{T} T^{-1} & =\left[\begin{array}{cc}
\dot{R} & \dot{p} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
R^{\mathrm{T}} & -R^{\mathrm{T}} p \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\dot{R} R^{\mathrm{T}} & \dot{p}-\dot{R} R^{\mathrm{T}} p \\
0 & 0
\end{array}\right] \quad\left[\omega_{s}\right]=\dot{R} R^{\mathrm{T}} \\
& =\left[\begin{array}{cc}
{\left[\omega_{s}\right]} & v_{s} \\
0 & 0
\end{array}\right] . \quad \begin{array}{l}
v_{s}=\dot{p}-\dot{R} R^{\mathrm{T}} p \quad \text { Not the linear velocity in fixed fr } \\
v_{s}=\dot{p}-\omega_{s} \times p=\dot{p}+\omega_{s} \times(-p)
\end{array}
\end{aligned}
$$

Imagining the moving body to be infinitely large

Linear velocity of a point at the origin of $\{s\}$ expressed in $\{s\}$

Twists

- Spatial twist (spatial velocity in the space frame)
$\mathcal{V}_{s}=\left[\begin{array}{c}\omega_{s} \\ v_{s}\end{array}\right] \in \mathbb{R}^{6} \quad\left[\mathcal{V}_{s}\right]=\left[\begin{array}{cc}{\left[\omega_{s}\right]} & v_{s} \\ 0 & 0\end{array}\right]=\dot{T} T^{-1} \in \operatorname{se}(3)$
- Relationship

$$
\begin{array}{rlrl}
{\left[\mathcal{V}_{b}\right]} & =T^{-1} \dot{T} & {\left[\mathcal{V}_{s}\right]=T\left[\mathcal{V}_{b}\right] T^{-1}} \\
& =T^{-1}\left[\mathcal{V}_{s}\right] T
\end{array}
$$

Twists

- Relationship between body twist and space twist

$$
\begin{gathered}
{\left[\mathcal{V}_{s}\right]=\left[\begin{array}{cc}
R\left[\omega_{b}\right] R^{\mathrm{T}} & -R\left[\omega_{b}\right] R^{\mathrm{T}} p+R v_{b} \\
0 & 0
\end{array}\right]} \\
R[\omega] R^{\mathrm{T}}=[R \omega] \quad[\omega] p=-[p] \omega \\
{\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]} \\
6 \times 6
\end{gathered}
$$

Adjoint Representations

- The adjoint representation of $T=(R, p) \in S E(3)$

$$
\left[\mathrm{Ad}_{T}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

- The adjoint map associated with T

$$
\begin{array}{ll}
\mathcal{V} \in \mathbb{R}^{6} \quad \mathcal{V}^{\prime}=\left[\mathrm{Ad}_{T}\right] \mathcal{V} \quad \text { or } \mathcal{V}^{\prime}=\mathrm{Ad}_{T}(\mathcal{V}) \\
{[\mathcal{V}] \in \operatorname{se}(3) \quad\left[\mathcal{V}^{\prime}\right]=T[\mathcal{V}] T^{-1}}
\end{array}
$$

Twists

$$
\begin{aligned}
& \mathcal{V}_{s}=\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right]=\left[\begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]=\left[\operatorname{Ad}_{T_{s b}}\right] \mathcal{V}_{b} \\
& \mathcal{V}_{b}=\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]=\left[\begin{array}{cc}
R^{\mathrm{T}} & 0 \\
-R^{\mathrm{T}}[p] & R^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right]=\left[\operatorname{Ad}_{T_{b s}}\right] \mathcal{V}_{s}
\end{aligned}
$$

In general

$$
\mathcal{V}_{c}=\left[\mathrm{Ad}_{T_{c d}}\right] \mathcal{V}_{d}, \quad \mathcal{V}_{d}=\left[\operatorname{Ad}_{T_{d c}}\right] \mathcal{V}_{c}
$$

Twists Example

- Pure Angular velocity $W=2 \mathrm{rad} / \mathrm{s}$

$$
\begin{gathered}
r_{s}=(2,-1,0) \quad r_{b}=(2,-1.4,0) \\
\omega_{s}=(0,0,2) \quad \omega_{b}=(0,0,-2) \\
T_{s b}=\left[\begin{array}{cc}
R_{s b} & p_{s b} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 4 \\
0 & 1 & 0 & 0.4 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

What are the linear velocities? $\quad V_{S} \quad V_{b}$

Recall Angular Velocities

- Angular velocity $\mathrm{w}=\hat{\mathrm{w}} \dot{\theta}$

$$
\begin{aligned}
\dot{\hat{x}} & =\mathrm{w} \times \hat{\mathrm{x}}, \\
\dot{\hat{\mathrm{y}}} & =\mathrm{w} \times \hat{\mathrm{y}}, \\
\dot{\hat{\mathrm{z}}} & =\mathrm{w} \times \hat{\mathrm{z}} .
\end{aligned}
$$

Twists Example

- Pure Angular velocity $\mathrm{W}=2 \mathrm{rad} / \mathrm{s}$

$$
\begin{gathered}
r_{s}=(2,-1,0) \quad r_{b}=(2,-1.4,0) \\
\omega_{s}=(0,0,2) \quad \omega_{b}=(0,0,-2) \\
T_{s b}=\left[\begin{array}{cc}
R_{s b} & p_{s b} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 4 \\
0 & 1 & 0 & 0.4 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Linear velocity of the car

$$
\begin{aligned}
& v_{s}=\omega_{s} \times\left(-r_{s}\right)=r_{s} \times \omega_{s}=(-2,-4,0), \\
& v_{b}=\omega_{b} \times\left(-r_{b}\right)=r_{b} \times \omega_{b}=(2.8,4,0)
\end{aligned}
$$

$$
\mathcal{V}_{s}=\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
2 \\
-2 \\
-4 \\
0
\end{array}\right], \quad \mathcal{V}_{b}=\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-2 \\
2.8 \\
4 \\
0
\end{array}\right]
$$

The Screw Interpretation of a Twist

- Screw axis: motion of a screw
- Rotating about the axis while translating along the axis

The Screw Interpretation of a Twist

- For any twist $\mathcal{V}=(\omega, v) \quad \omega \neq 0$
- These exists $\{q, \hat{s}, h\} \quad \dot{\theta}$

$$
\hat{s}=\omega /\|\omega\| \quad \dot{\theta}=\|\omega\|
$$

$$
h=\hat{\omega}^{\mathrm{T}} v / \dot{\theta}
$$

portion of v parallel to the screw axis
$-\hat{s} \dot{\theta} \times q$ provides the portion of v orthogonal to the screw axis

$$
\text { If } \omega=0 \quad \hat{s}=v /\|v\|
$$

$\dot{\theta}$ is interpreted as the linear velocity $\|v\|$ along \hat{s}

The Screw Interpretation of a Twist

- Another representation of the screw axis

$$
\begin{array}{ll}
\text { If } \omega \neq 0 & \mathcal{S}=\mathcal{V} /\|\omega\|=(\omega /\|\omega\|, v /\|\omega\|) \\
\mathcal{V}=(\omega, v) & \dot{\theta}=\|\omega\| \quad \mathcal{S} \dot{\theta}=\mathcal{V} \\
\text { If } \omega=0 & \mathcal{S}=\mathcal{V} /\|v\|=(0, v /\|v\|) \\
& \dot{\theta}=\|v\| \quad \mathcal{S} \dot{\theta}=\mathcal{V}
\end{array}
$$

Screw Axis

- A screw axis is a normalized twist $\quad \mathcal{S}=\left[\begin{array}{c}\omega \\ v\end{array}\right] \in \mathbb{R}^{6} \quad \mathcal{S} \dot{\theta}=\mathcal{V}$

$$
\begin{gathered}
{[\mathcal{S}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \operatorname{se}(3) \quad[\omega]=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \in \operatorname{so}(3)} \\
\mathcal{S}_{a}=\left[\mathrm{Ad}_{T_{a b}}\right] \mathcal{S}_{b}, \quad \mathcal{S}_{b}=\left[\mathrm{Ad}_{T_{b a}}\right] \mathcal{S}_{a}
\end{gathered}
$$

Summary

- Twists
- Screw Axis

Further Reading

- Chapter 3 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017
- M. Ceccarelli. Screw axis defined by Giulio Mozzi in 1763 and early studies on helicoidal motion. Mechanism and Machine Theory, 35:761-770, 2000.
- J. M. McCarthy. Introduction to Theoretical Kinematics. MIT Press, Cambridge, MA, 1990.

