Angular Velocities and Exponential Coordinates of Rotations

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang
The University of Texas at Dallas

Rigid-Body in 3D

- Origin of the body frame $p=p_{1} \hat{\mathrm{x}}_{\mathrm{S}}+p_{2} \hat{\mathrm{y}}_{\mathrm{S}}+p_{3} \hat{\mathrm{z}}_{\mathrm{S}}$
- Axes of the body frame

$$
\begin{aligned}
\hat{\mathrm{x}}_{\mathrm{b}} & =r_{11} \hat{\mathrm{x}}_{\mathrm{s}}+r_{21} \hat{\mathrm{y}}_{\mathrm{s}}+r_{31} \hat{\mathrm{z}}_{\mathrm{s}} \\
\hat{\mathrm{y}}_{\mathrm{b}} & =r_{12} \hat{\mathrm{x}}_{\mathrm{s}}+r_{22} \hat{\mathrm{y}}_{\mathrm{s}}+r_{32} \hat{\mathrm{z}}_{\mathrm{s}} \\
\hat{\mathrm{z}}_{\mathrm{b}} & =r_{13} \hat{\mathrm{x}}_{\mathrm{s}}+r_{23} \hat{\mathrm{y}}_{\mathrm{s}}+r_{33} \hat{\mathrm{z}}_{\mathrm{s}}
\end{aligned}
$$

$$
\text { Translation } \quad p=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right] \quad \begin{aligned}
& \left.R=\left[\begin{array}{lll}
\hat{\mathrm{x}}_{\mathrm{b}} & \hat{\mathrm{y}}_{\mathrm{b}} & \hat{\mathrm{z}}_{\mathrm{b}}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] .\right] . \text { Rotation matrix }
\end{aligned}
$$

Rotating a Vector or a Frame

- Rotate frame $\{c\}$ about a unit axis $\hat{\omega}$ by θ to get frame $\left\{c^{\prime}\right\}$

$$
R=R_{s c^{\prime}}
$$

frame $\left\{c^{\prime}\right\}$ relative to frame $\{s\}$

- Rotation operation

$$
R=\operatorname{Rot}(\hat{\omega}, \theta)
$$

To rotate a vector $v^{\prime}=R v$

Rotating a Vector or a Frame

- $\{\mathrm{b}\}$ in $\{\mathrm{s}\} R_{s b}$
- Rotate $\{b\}$ with
$\operatorname{Rot}(\hat{\omega}, \theta)$

$\hat{\omega}$ represented in $\{s\}$ or $\{b\}$?

$$
\begin{aligned}
R_{s b^{\prime}} & =\text { rotate_by_ } R \text { _in_ }\{\mathrm{s}\} _ \text {frame }\left(R_{s b}\right)
\end{aligned}=R R_{s b}, \text { } \quad R_{s b^{\prime \prime}}=\text { rotate_by_ } R \text { _in_ }\{\mathrm{b}\} \text { _frame }\left(R_{s b}\right)=R_{s b} R
$$

Angular Velocities

- Axes $\{\hat{X}, \hat{y}, \hat{z}\} \quad$ Unit length
- Time derivates of these axes $\dot{\hat{\mathrm{X}}}$

Rotating around \hat{W} by $\Delta \theta$
\hat{W} is coordinate free for now
$\Delta t \rightarrow 0 \quad \Delta \theta / \Delta t \rightarrow \dot{\theta}$

- Angular velocit

$$
\mathrm{w}=\hat{\mathrm{w}} \dot{\theta}
$$

Angular Velocities

- Angular velocity $\mathrm{w}=\hat{\mathrm{w}} \dot{\theta}$

$$
\begin{aligned}
\dot{\hat{x}} & =\mathrm{w} \times \hat{\mathrm{x}}, \\
\dot{\hat{\mathrm{y}}} & =\mathrm{w} \times \hat{\mathrm{y}}, \\
\dot{\hat{z}} & =\mathrm{w} \times \hat{\mathrm{z}}
\end{aligned}
$$

Angular Velocities

- To express these equations in coordinates, we have to choose a reference frame for w
- Two natural choices: fixed frame $\{s\}$ or body frame $\{b\}$
- Consider fixed frame $\{\mathrm{s}\}$
- Orientation of the body frame at time $\mathrm{t} R(t)$
- Time rate of change $\dot{R}(t)$
- Angular velocity $\omega_{s} \in \mathbb{R}^{3} \quad \dot{r}_{i}=\omega_{s} \times r_{i}, \quad i=1,2,3$.

Column

$$
\dot{R}=\left[\begin{array}{lll}
\omega_{s} \times r_{1} & \omega_{s} \times r_{2} & \omega_{s} \times r_{3}
\end{array}\right]=\omega_{s} \times R .
$$

Skew-symmetric Matrix
$x=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{\mathrm{T}} \in \mathbb{R}^{3} \quad[x]=\left[\begin{array}{ccc}0 & -x_{3} & x_{2} \\ x_{3} & 0 & -x_{1} \\ -x_{2} & x_{1} & 0\end{array}\right]$
$[x]=-[x]^{\mathrm{T}}$
$\omega_{s} \times R=\left[\omega_{s}\right] R \quad\left[\omega_{s}\right] R=\dot{R} \quad\left[\omega_{s}\right]=\dot{R} R^{-1}$
Proposition $\quad R[\omega] R^{\mathrm{T}}=[R \omega] \omega \in \mathbb{R}^{3} \quad R \in S O(3)$
https://en.wikipedia.org/wiki/Skew-symmetric matrix

Angular Velocities

- To express these equations in coordinates, we have to choose a reference frame for w
- Two natural choices: fixed frame $\{s\}$ or body frame $\{b\}$

$$
\left[\omega_{s}\right]=\dot{R} R^{-1}
$$

- Consider body frame $\{b\} \quad \omega_{b}$

$$
\begin{aligned}
\omega_{s}= & R_{s b} \omega_{b} \quad \omega_{b}=R_{s b}^{-1} \omega_{s}=R^{-1} \omega_{s}=R^{\mathrm{T}} \omega_{s} \\
{\left[\omega_{b}\right] } & =\left[R^{\mathrm{T}} \omega_{s}\right]=R^{\mathrm{T}}\left(\dot{R} R^{\mathrm{T}}\right) R \\
& =R^{\mathrm{T}}\left[\omega_{s}\right] R=R^{\mathrm{T}} \dot{R}=R^{-1} \dot{R}
\end{aligned}
$$

Angular Velocities

- Orientation of the body frame at time t in the fixed frame $R(t)$
- Angular velocity w

$$
\begin{aligned}
\dot{R} R^{-1} & =\left[\omega_{s}\right] \\
R^{-1} \dot{R} & =\left[\omega_{b}\right]
\end{aligned}
$$

- Change of reference frame

$$
\omega_{c}=R_{c d} \omega_{d}
$$

Exponential Coordinate Representation of Rotation

- Exponential coordinates
- A rotation axis (unit length) $\hat{\omega}$
- An angle of rotation about the axis θ

$$
\hat{\omega} \theta \in \mathbb{R}^{3}
$$

- Interpretation $R=\operatorname{Rot}(\hat{\omega}, \theta)$
- Axis-angle rotation of the fixed frame $\{s\}$
- Apply angular velocity $\hat{\omega} \theta$ for one unit of time

- Apply angular velocity $\hat{\omega}$ for θ units of time

Linear Differential Equations

- A differential equation is an equation that relates one or more functions and their derivatives

$$
\frac{d \mathbf{x}_{p}(t)}{d t}=\dot{\mathbf{x}}_{p}(t)=\mathbf{v}\left(\mathbf{x}_{p}, t\right)
$$

- A scalar linear differential equation $\dot{x}(t)=a x(t) \quad x(t) \in \mathbb{R}, a \in \mathbb{R}$ ${ }_{\text {Initial condition }} x(0)=x_{0} \quad$ solution $x(t)=e^{a t} x_{0}$

$$
e^{a t}=1+a t+\frac{(a t)^{2}}{2!}+\frac{(a t)^{3}}{3!}+\cdots
$$

Linear Differential Equations

- Vector linear differential equations

$$
\dot{x}(t)=A x(t) \quad x(t) \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}
$$

${ }^{\text {Initial condition }} x(0)=x_{0} \quad$ solution $x(t)=e^{A t} x_{0}$
matrix exponential $\quad e^{A t}=I+A t+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\cdots$
If A is constant and finite, this series converges to a finite limit

Linear Differential Equations

- Vector linear differential equations

$$
\begin{aligned}
\dot{x}(t) & =A x(t) \quad x(t)=e^{A t} x_{0} \\
\dot{x}(t) & =\left(\frac{d}{d t} e^{A t}\right) x_{0} \\
& =\frac{d}{d t}\left(I+A t+\frac{A^{2} t^{2}}{2!}+\frac{A^{3} t^{3}}{3!}+\cdots\right) x_{0} \\
& =\left(A+A^{2} t+\frac{A^{3} t^{2}}{2!}+\cdots\right) x_{0} \\
& =A e^{A t} x_{0} \\
& =A x(t),
\end{aligned}
$$

Properties of the Matrix Exponential

1. $d\left(e^{A t}\right) / d t=A e^{A t}=e^{A t} A$
2. If $A=P D P^{-1}$ for some $D \in \mathbb{R}^{n \times n}$ and invertible $P \in \mathbb{R}^{n \times n}$ then $e^{A t}=$ $P e^{D t} P^{-1}$.
3. If $A B=B A$ then $e^{A} e^{B}=e^{A+B}$
4. $\left(e^{A}\right)^{-1}=e^{-A}$

$$
e^{A t}=I+A t+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\cdots
$$

Exponential Coordinates

- $\mathrm{p}(0)$ is rotated to $p(\theta)$
- At a constant rate of $1 \mathrm{rad} / \mathrm{s}$
- $p(t):$ path traced by the tip of vector

$$
\dot{p}=\hat{\omega} \times p
$$

$$
\text { skew-symmetric Matrix } \quad \dot{D}=[\hat{\omega}] \boldsymbol{P}
$$

Exponential Coordinates

- $p(t)=e^{[\hat{\omega}] t} p(0)$

$$
p(\theta)=e^{[\hat{\omega}] \theta} p(0)
$$

$$
[\hat{\hat{\omega}}]^{3}=-[\hat{\omega}]
$$

$$
=I+\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right)[\hat{\omega}]+\left(\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\frac{\theta^{6}}{6!}-\cdots\right)[\hat{\omega}]^{2}
$$

$$
\begin{array}{rlr}
\sin \theta & =\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots & \operatorname{Rot}(\hat{\omega}, \theta)=e^{[\hat{\omega}] \theta}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2} \in S O(3) \\
\cos \theta=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots & \text { Rodrigues' formula: exponential coordinates to rotation matrix }
\end{array}
$$

Rodrigues' formula

$$
\operatorname{Rot}(\hat{\omega}, \theta)=e^{[\hat{\omega}] \theta}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2} \in S O(3)
$$

$\operatorname{Rot}(\hat{\omega}, \theta)=$

$$
\left[\begin{array}{ccc}
c_{\theta}+\hat{\omega}_{1}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)-\hat{\omega}_{3} s_{\theta} & \hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{2} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)+\hat{\omega}_{3} s_{\theta} & c_{\theta}+\hat{\omega}_{2}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{1} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{2} s_{\theta} & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{1} s_{\theta} & c_{\theta}+\hat{\omega}_{3}^{2}\left(1-c_{\theta}\right)
\end{array}\right]
$$

$$
\mathrm{s}_{\theta}=\sin \theta \quad \mathrm{c}_{\theta}=\cos \theta \quad \hat{\omega}=\left(\hat{\omega}_{1}, \hat{\omega}_{2}, \hat{\omega}_{3}\right)
$$

Exponential Coordinates

- An example

$$
\hat{\omega}_{1}=(0,0.866,0.5) \quad \theta_{1}=30^{\circ}
$$

$$
\begin{aligned}
R & =e^{\left[\hat{\omega}_{1}\right] \theta_{1}} \\
& =I+\sin \theta_{1}\left[\hat{\omega}_{1}\right]+\left(1-\cos \theta_{1}\right)\left[\hat{\omega}_{1}\right]^{2} \\
& =I+0.5\left[\begin{array}{ccc}
0 & -0.5 & 0.866 \\
0.5 & 0 & 0 \\
-0.866 & 0 & 0
\end{array}\right]+0.134\left[\begin{array}{ccc}
0 & -0.5 & 0.866 \\
0.5 & 0 & 0 \\
-0.866 & 0 & 0
\end{array}\right]^{2} \\
& =\left[\begin{array}{ccc}
0.866 & -0.250 & 0.433 \\
0.250 & 0.967 & 0.058 \\
-0.433 & 0.058 & 0.899
\end{array}\right] .
\end{aligned}
$$

Exponential Coordinates

$$
\hat{\omega}_{1} \theta_{1}=(0,0.453,0.262)
$$

Summary

- Angular velocity
- Exponential coordinates

Further Reading

- Chapter 3 and Appendix B in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017
- Quaternion and Rotations, Yan-Bin Jia, https://graphics.stanford.edu/courses/cs348a-17winter/Papers/quaternion.pdf
- Introduction to Robotics, Prof. Wei Zhang, OSU, Lecture 3, Rotational Motion, http://www2.ece.ohiostate.edu/~zhang/RoboticsClass/index.html

