Configuration Space

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

EST

NIV

Robotics

What is the common phenomenon in these robots? Motion

Robot Mechanisms

• Links and Joints

Franka Emika

Robot Mechanisms

• Links and Joints

Fetch Mobile Manipulator

Robot Mechanisms

• Links and Joints

• Every joint connects exactly two links

- Revolute joint (R)
 - Hinge joint
 - Allows rotation motion about the joint axis

- Prismatic Joint (P)
 - Sliding joint or linear joint
 - Allows translational motion along the direction of the joint axis

- Helical Joint (H)
 - Screw joint
 - Allows rotation and translatio about a screw axis

- Cylindrical joint (C)
 - Allows independent translations and rotations about a single fixed joint axis

- Universal joint (U)
 - A pair of revolute joints with orthogonal joint axes

ШПП

Universal (U)

- Spherical joint (S)
 - Ball-and-socket joint

Spherical (S)

https://youtu.be/kztZu3uTyvM

• Every joint connects exactly two links

Yu Xiang

Degrees of Freedom

- Maximum number of logically independent values
- Specify the position of a rigid body

Degrees of Freedom of Robot Joints

- Revolute joint
 - 1 DOF
- Prismatic joint
 - 1 DOF
- Helical joint
 - 1 DOF

Degrees of Freedom of Robot Joints

- Cylindrical joint
 - 2 DOF
- Universal joint
 - 2 DOF
- Spherical joint
 - 3 DOF

Degrees of Freedom of Robot Joints

Yu Xiang

Constraints c

between two

spatial

rigid bodies

5

5

5

4

4

3

planar

 $\mathbf{2}$

2

N/A

N/A

N/A

N/A

Degrees of Freedom of a Robot

- 4 revolute joints
- 4 DOFs

- 7 revolute joints for the arm
- 7 DOFs

Configuration Space of a Robot

- The configuration of a robot is a complete specification of the position of every point of the robot.
- The minimum number n of real-valued coordinates needed to represent the configuration is the number of degrees of freedom (DOF) of the robot.
- The n-dimensional space containing all possible configurations of the robot is called the configuration space (C-space).
- The configuration of a robot is represented by a point in its C-space.

- 4 revolute joints
- 4 DOFs

Configuration Space of a Robot

- The configuration space of the Fetch arm is a 7D space
- Each value in the 7D vector indicates the value of the revolute joint

Grübler's Formula

• The number of degrees of freedom of a mechanism with links and joints can be calculated using Grübler's formula

degrees of freedom = (sum of freedoms of the bodies) -

(number of independent constraints)

- Consider the following setting
 - A robot with N links, J joints (consider ground as one link)
 - Each link has m DOF (planar link? spatial link?)
 - Number of freedoms by joint i f_i
 - Number of constraints by joint i C_i

$$f_i + c_i = m$$

Grübler's Formula

Ground is regarded as a link

$$= m(N-1) - \sum_{i=1}^{J} (m - f_i)$$
$$= m(N-1 - J) + \sum_{i=1}^{J} f_i.$$

Assume all joint constraints are independent.

Open-Chain vs. Closed-Chain

- Open-chain mechanisms: without a closed loop
- Closed-chain mechanisms: with a closed loop
- Examples
 - A person standing with both feet

Stewart-Gough platform

Grübler's Formula

The planar four-bar linkage

- How many links?
 - 4 (one is ground)
- Each link has m DOF. What is m?
 - m=3

dof
$$= m(N-1-J) + \sum_{i=1}^{J} f_i$$

= $3(4-1-4) + \sum_{i=1}^{4} 1$

Grübler's Formula

Slider-crank mechanism (planar)

- How many links?
 - 4 (one is ground)
- Each link has m DOF. What is m?
 - m=3
- How many joints?
 - 3 revolute joints, 1 prismatic joint

DOF
$$= m(N - 1 - J) + \sum_{i=1}^{J} f_i$$

 $= 3(4 - 1 - 4) + \sum_{i=1}^{4} 1$

- Configuration specifies the position of a robot
- For a robot with n joints, the configuration is a vector in \mathbb{R}^n
 - C-space
- Joints may have limits, upper bound and lower bound
- Topology: shape of the space
 - Consider all the feasible points in the configuration space

- n-dimensional Euclidean space \mathbb{R}^n
- n-dimensional sphere in a (n+1)-dimensional Euclidean space S^n
 - Two-dimensional surface of a sphere in three-dimensional space S^2
- The C-space can have different representations, but its shape is the same
 - A point on a circle, angle heta , coordinates (x, y) $\ x^2+y^2=1$

 S^2

- C-space as Cartesian product
 - A rigid body in the plane $~\mathbb{R}^2 \, imes \, S^1$
 - A PR robot (Prismatic-Revolute) $\ \mathbb{R}^1 imes S^1$
 - Ignore joint limits
 - A 2R robot $S^1 imes S^1 = T^2$

G

2R robot arm

 $T^2\!=\!S^1\!\times\!S^1$

sample representation

• C-space of a planar rigid body with a 2R robot arm

$$\mathbb{R}^2 \times S^1 \times T^2 = \mathbb{R}^2 \times T^3$$

- C-space of a rigid body in 3D space
 - 3D translation
 - 3D rotation $\mathbb{R}^3 imes S^2 imes S^1$

Configuration Space Representation

- Explicit parameterization
 - Use n coordinates for n-dimensional space
 - A sphere: latitude-longitude
 - Singularities at North Pole and South Pole
 - Problem with the representation, not the topology
 - Infinity velocity problem $\sqrt{\dot{x}^2+\dot{y}^2+\dot{z}^2}$
- Deal with singularities
 - Use more than one coordinate chart (each covers a portion of the space)
 - Implicit representations
 - Sphere (x,y,z) $x^2 + y^2 + z^2 = 1$

More numbers than DOF

• Rotation matrix for 3D rotations

Summary

- Robot links and joints
- Degrees of freedom of joints and robots
- Grübler's Formula
- Configuration space

Further Reading

- Chapter 2 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017 http://hades.mech.northwestern.edu/images/7/7f/MR.pdf
- T. Lozano-Perez. Spatial planning: a configuration space approach. A.I. Memo 605, MIT Artificial Intelligence Laboratory, 1980. http://people.csail.mit.edu/tlp/
- W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, 2002.