Course Information

Course Number/Section Course Title

Term Class Level Activity Type Days & Times Location Course Modality Credit Hours CS 6301.001 Special Topics in Computer Science: Introduction to Robot Manipulation and Navigation Fall 2022 Graduate Lecture Monday & Wednesday 1:00 PM – 2:15 PM ECSW 3.210 Face-to-Face 3

Professor Information

Instructor Office Phone Email Address Office Location Office Hours Prof. Yu Xiang, Ph.D. (972) 883-3891 <u>yu.xiang@utdallas.edu</u> ECSS 4.702 Monday & Wednesday 3:30PM – 4:30PM

Teaching Assistant Information

Teaching Assistant	Ninad Khargonkar	
Email Address	ninadarun.khargonkar@utdallas.edu	
Office Location	ECSS 3.618	
Office Hours	Tuesday 1:00PM – 2:00PM	

Course Pre-requisites, Co-requisites, and/or Other Restrictions

MATH 2418 Linear algebra, MATH 2413 Differential Calculus or MATH 2417 Calculus I, CS 2336 Computer Science II, CS 5343 Algorithm Analysis and Data Structures

Course Description

Theory and practice of robotics. Provides in-depth overview of robot manipulation and robot navigation, including kinematics, statics, and dynamics of robot manipulators, motion planning, state estimation, environment mapping and robot control.

Student Learning Objectives/Outcomes

- Ability to understand the design of robot manipulators and wheeled robots.
- Ability to understand kinematics, statics, and dynamics in robot manipulation
- Ability to solve motion planning problems in manipulation and navigation
- Ability to understand state estimation with filtering techniques in robot navigation
- Ability to perform environment mapping for robot navigation
- Ability to understand robot control for manipulation and navigation

Required Textbooks and Materials

Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition. ISBN-13: 978-1107156302 ISBN-10: 1107156300 http://hades.mech.northwestern.edu/images/7/7f/MR.pdf

Textbooks and some other bookstore materials can be ordered online or purchased at the <u>UT Dallas</u> <u>Bookstore</u>.

Technical Requirements

In addition to a confident level of computer and Internet literacy, certain minimum technical requirements must be met to enable a successful learning experience. Please review the important technical requirements on the <u>Getting Started with eLearning</u> webpage.

Course Access and Navigation

This course can be accessed using your UT Dallas NetID account on the <u>eLearning</u> website. Please see the course access and navigation section of the <u>Getting Started with eLearning</u> webpage for more information.

To become familiar with the eLearning tool, please see the <u>Student eLearning Tutorials</u> webpage. UT Dallas provides eLearning technical support 24 hours a day, 7 days a week. The <u>eLearning Support</u> <u>Center</u> includes a toll-free telephone number for immediate assistance (1-866-588-3192), email request service, and an online chat service.

Communication

This course utilizes online tools for interaction and communication. Some external communication tools such as regular email and a web conferencing tool may also be used during the semester. For more details, please visit the <u>Student eLearning Tutorials</u> webpage for video demonstrations on eLearning tools.

Distance Learning Student Resources

Online students have access to resources including the McDermott Library, Academic Advising, The Office of Student AccessAbility, and many others. Please see the <u>eLearning Current Students</u> webpage for more information.

Server Unavailability or Other Technical Difficulties

The University is committed to providing a reliable learning management system to all users. However, in the event of any unexpected server outage or any unusual technical difficulty which prevents students from completing a time sensitive assessment activity, the instructor will provide an appropriate accommodation based on the situation. Students should immediately report any problems to the instructor and also contact the online <u>eLearning Help Desk</u>. The instructor and the eLearning Help Desk will work with the student to resolve any issues at the earliest possible time.

Grading Policy

Credit Distribution

- Homework (50%)
 - (10%) Homework #1
 - o (10%) Homework #2
 - (10%) Homework #3
 - o (10%) Homework #4
 - (10%) Homework #5
- Team Project (45%)
 - (5%) Project proposal
 - (10%) Project mid-term report
 - o (15%) Project presentation
 - (15%) Project final report
- In-Class Activity (5%)

Grading Scale

- A 93 or above
- A- 90-93
- B+ 87-90
- B 83-87
- B- 80-83
- C+ 77-80
- C 70-77
- F 70 or below

Course Policies

- eLearning is the official information portal for this course. Course announcements, homework, lecture slides, assignments, and grades will be communicated via eLearning
- Final course grade will be posted in Galaxy by the Records Office
- Attendance:
 - Required for mandatory class sessions. There will be 1-point deduction for each mandatory class absence in Team Project participation score (5%). There will be zero point for class participation if the number of absences is three or more.
- If you decide to stop attending class, be sure to drop or withdraw from the course. Otherwise, you risk receiving an 'F' or 'NF' for the course.
- No additional individual assignments can be assigned for extra credit. Only assignments that are available to the entire class may count toward the course grade.

UT Dallas Syllabus Policies and Procedures

Please visit http://go.utdalls.edu/syllabus-policies for other policies

Schedule				
Week	Monday	Wednesday	Deadlines	
1	8/22	8/24		
	Introduction to Robotics	Configuration Space		
2	8/29	8/31		
	Task Space, Workspace, Introduction to ROS	2D Rigid-Body Motions and Rotation Matrices		
3	9/5	9/7	HW1 release on 9/5, due	
	Labor Day	Course Project Description	9/12 at 11:59PM CT	
4	9/12	9/14	Project description	
	Angular Velocities and Exponential Coordinates of Rotations	Matrix Logarithm of Rotations and Homogeneous Transformation Matrices	release on 9/12, proposal due 9/19 at 11:59PM CT	
5	9/19	9/21	HW2 release on 9/21,	
	Twists and Screw Axes	Exponential Coordinates of Rigid- Body Motions and Wrenches	due 9/28 at 11:59PM CT	
6	9/26	9/28		
	Forward Kinematics and Denavit- Hartenberg Parameters	Forward Kinematics and Product of Exponentials Formula		
7	10/3	10/5	HW3 release on 10/5,	
	Velocity Kinematics	Inverse Kinematics	due 10/12 at 11:59PM CT	
8	10/10	10/12		
	Dynamics I	Dynamics II		
9	10/17	10/19	Project mid-term report	
	Dynamics III	Robot Control I	due 10/26 at 11:59PM CT	
10	10/24	10/26	HW4 release on $10/26$,	
	Robot Control II	Robot Control III	due 11/2 at 11:59PM CT	
11	10/31	11/2		
	Motion Planning I	Motion Planning II		
12	11/7	11/9	HW5 release on 11/9,	
	Wheeled Mobile Robots	Grasp Planning	due 11/16 at 11:59PM CT	
13	11/14	11/16		
	Reinforcement Learning I	Reinforcement Learning II		
14	11/21	11/23		
	Fall Break	Fall Break		
15	11/28	11/30		
	IRVL Visit	Guest Lecture: Dr. David Held		
16	12/5	12/7	Project final report due	
	Project Presentation I	Project Presentation II	12/14 at 11:59PM CT	

The descriptions and timelines contained in this syllabus are subject to change at the discretion of the Professor.