

CS 4391 Introduction Computer Vision Professor Yu Xiang The University of Texas at Dallas

Feature Detection and Matching

Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV'15

Applications: stereo matching, image stitching, 3D reconstruction, camera pose estimation, object recognition

Feature Detectors

 How to find image locations that can be reliably matched with images?

Yu Xiang

Feature Detectors

Harris Corner Detector

$$\begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

Compute x and y derivatives of image 1.

x and y derivatives of image Sobel filter
$$\mathbf{G}_x = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} * \mathbf{A}$$

 $I_x = \mathbf{G}_{\sigma}^x * I \qquad I_y = \mathbf{G}_{\sigma}^y * I \qquad \mathbf{G}_y = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$

2. Compute products of derivatives at every pixel

$$I_{x^2} = I_x \cdot I_x \qquad \qquad I_{y^2} = I_y \cdot I_y \qquad \qquad I_{xy} = I_x \cdot I_y$$

3. Compute the sums of products of derivatives at each pixel

Gaussian window

$$S_{x^2} = G_{\sigma'} * I_{x^2}$$
 $S_{y^2} = G_{\sigma'} * I_{y^2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

Harris Corner Detector

3. Determine the matrix at every pixel

$$M(x, y) = \begin{bmatrix} S_{x^2}(x, y) & S_{xy}(x, y) \\ S_{xy}(x, y) & S_{y^2}(x, y) \end{bmatrix}$$

4. Compute the response of the detector at each pixel

$$R = \det M - k (\operatorname{trace} M)^2$$

5. Threshold on R and perform non-maximum suppression

Invariance

- Can the same feature point be detected after some transformation?
 - Translation invariance Are Harris corners translation invariance?
 - 2D rotation invariance Are Harris corners rotation invariance?
 - Scale invariance

Are Harris corners scale invariance?

Scale Invariance

• Solution 1: detection features in all scales, matching features in corresponding scale (for small scale change)

Image pyramid

Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown, Szeliski, and Winder 2005)

Scale Invariance

• Solution 2: detect features that are stable in both location and scale

Intuition: Find local maxima in both position and scale Consider Harris corner detector

What filter can we use for scale selection?

Scale Invariance Feature Transform (SIFT)

• Keypoint detection

• Compute descriptors

Matching descriptors

David Lowe, Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 2004

2/13/2025

Recall: Second Derivative Filters

• Peaks or valleys of the first-derivative of the input signal, correspond to "zero-crossings" of the second-derivative of the input signal

Recall: Second Derivate of Gaussian

Highest response when the signal has the same **characteristic scale** as the filter

Multi-scale 2D Blob detection

peak!

local maximum

cross-scale maximum

local maximum

local maximum

Yu Xiang

9.8

Approximating LoG with DoG

 LoG can be approximate by a Difference of two Gaussians (DoG) at different scales

SIFT: Scale-space Extrema Detection

• Difference of Gaussian (DoG)

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2 + y^2)/2\sigma^2}$$

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$

$$D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y)$$

= $L(x, y, k\sigma) - L(x, y, \sigma).$

Approximate of Laplacian of Gaussian (efficient to compute)

k is a constant

SIFT: Scale-space Extrema Detection

• Gaussian pyramid

• Gaussian filters

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$

- Sub-sampling by a factor of 2
 - Multiple the Gaussian kernel deviation by 2

SIFT: Scale-space Extrema Detection

Scale (next octave) Scale (first octave) Difference of Gaussian (DOG) Gaussian

Maxima and minima of DoG images

$$\begin{split} L(x,y,\sigma) &= G(x,y,\sigma) * I(x,y) \\ G(x,y,\sigma) &= \frac{1}{2\pi\sigma^2} e^{-(x^2+y^2)/2\sigma^2} \end{split} \quad D(x,y,\sigma) = (G(x,y,k\sigma) - G(x,y,\sigma)) * I(x,y) \\ &= L(x,y,k\sigma) - L(x,y,\sigma). \end{split}$$

. . .

Further Reading

- Section 7.1, Computer Vision, Richard Szeliski
- David Lowe, Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 2004 <u>https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf</u>
- ORB: An efficient alternative to SIFT or SURF. Rublee et al., ICCV, 2011