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Feature Detection and Matching

Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV’15

Applications: stereo matching, image stitching, 3D reconstruction,
camera pose estimation, object recognition
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Feature Detectors

* How to find image locations that can be reliably matched with
images?




Feature Detectors
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Harris Corner Detector
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2. Compute products of derivatives at every pixel
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3. Compute the sums of products of derivatives at each pixel
Gaussian window
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Harris Corner Detector

3. Determine the matrix at every pixel

S.(6y) S, (xp)
Sxy(xay) SyZ(xay)

4. Compute the response of the detector at each pixel

R =det M - k(traceM )2

5. Threshold on R and perform non-maximum suppression

M()C,y) =




Invariance

e Can the same feature point be detected after some transformation?

 Translation invariance
Are Harris corners translation invariance?

* 2D rotation invariance
Are Harris corners rotation invariance?

e Scale invariance

Are Harris corners scale invariance?
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Scale Invariance

* Solution 1: detection features in all scales, matching features in
corresponding scale (for small scale change)

1
()

coarse ’E\ [
\

/
\

/o \ \

Il
—

C o o
/& o o o & o & &

Image pyramid Multi-scale oriented patches (MOPS) extracted at five pyramid
levels (Brown, Szeliski, and Winder 2005)




Scale Invariance

e Solution 2: detect features that are stable in both location and scale

Consider Harris corner detector

Intuition: Find local
maxima in both
position and scale
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What filter can we use Image 1 Image 2
for scale selection? /'\ /\
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Scale Invariance Feature Transform (SIFT)

* Keypoint detection

e Compute descriptors

e Matching descriptors
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David Lowe, Distinctive Image Features frdm Scale-Invariant Keypoints. 1JCV, 2004




Recall: Second Derivative Filters

* Peaks or valleys of the first-derivative of the input signal, correspond
to “zero-crossings” of the second-derivative of the input signal
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Recall: Second Derivate of Gaussian

g"'(x) = (———)
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Mexican Hat Function

Laplacian of Gaussian




Laplacian of Gaussian for Scale Selection

Laplacian filter
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Highest response when the signal has the
same characteristic scale as the filter




Laplacian of Gaussian for Scale Selection
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Laplacian of Gaussian for Scale Selection
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Multi-scale
2D Blob detection




Laplacian of Gaussian for Scale Selection

local maximum

Ccross-scale maximum local maximum
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Approximating LoG with DoG

* LoG can be approximate by a Difference of two Gaussians (DoG) at
different scales

VQG ~ (1 Q Best approximation when:
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1D example
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SIFT: Scale-space Extrema Detection

 Difference of Gaussian (DoG)
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(efficient to compute) k'is a constant




SIFT: Scale-space Extrema Detection

e Gaussian pyramid

40- e Gaussian filters
: = L(z,y,0) = G(z,y,0) * I(z,y)
: = 9L
3 =
. = 20
s 20
_ : e Sub-sampling by a factor of 2
b-sampl
SUp-sampiing /{2 O * Multiple the Gaussian kernel deviation by 2




SIFT: Scale-space Extrema Detection
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Maxima and minima of DoG images

(G(z,y, ko) — G(z,y,0)) x I(z,y)
L(z,y,ko) — L(x,y,0).




Further Reading

* Section 7.1, Computer Vision, Richard Szeliski

e David Lowe, Distinctive Image Features from Scale-Invariant
Keypoints. IJCV, 2004 https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

 ORB: An efficient alternative to SIFT or SURF. Rublee et al., ICCV, 2011



https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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