

CS 4391 Introduction Computer Vision Professor Yu Xiang The University of Texas at Dallas

• Edges occur at boundaries between regions of different color, intensity or texture

Step Edge and Ramp Edge

Step Edge, Ramp Edge

Ridge Edge

Ridge Edge

Ridge Edge

Yu Xiang

Roof Edge

Roof Edge

Yu Xiang

How to Detect Edges?

• Recall Derivative Filter

Central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

X derivative filter

Recall Derivative Convolution

$$I_{x} = \begin{bmatrix} 1 \ 0 \ -1 \end{bmatrix} * I$$
Partial derivative wrt x
$$I_{x} = \begin{bmatrix} 1 \ 0 \ -1 \end{bmatrix} * I$$
Partial derivative wrt y
Note that there is a difference between convolving with a 1xn row filter and an nx1 col filter.
$$I_{y} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} * I$$

Signal Noises

• Derivative filters are sensitive to noises

2/4/2025

Gaussian Filter

• Smoothing

1D
$$g(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}$$
 Gaussian Filter h $g_{0} = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2+y^2}{2\sigma^2}}$ $g(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$

-2.0

0.0

2.0

	2	Ι
2	4	2
Ι	2	Ι

Gaussian Filter

Derivative of Gaussian Filter

• Derivative Theorem of Convolution $\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$

Derivative of Gaussian Filter

• Derivative Theorem of Convolution $\frac{\partial}{\partial r}(h \star f) = (\frac{\partial}{\partial r}h) \star f$

Gaussian

2/4/2025

Image Gradient

Yu Xiang

Gradient direction

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Gradient magnitude
$$\nabla f || = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Edge Normal and Edge Direction

- Edge normal
 - Unit vector in the direction of maximum intensity change
 - Gradient direction
- Edge direction
 - Unit vector along edge (perpendicular to edge normal)

- A simple edge detector using gradient magnitude
 - 1. Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters

2. Compute gradient magnitude at each pixel

$$||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

3. If magnitude at a pixel exceeds a threshold, report a possible edge point

Magnitude of gradients

Edge Location

edge and noise

 $\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$

derivative of Gaussian (x)

 $\frac{\partial}{\partial x}h_{\sigma}(u,v)$

Smoothed derivative removes noise, but blurs edge

2/4/2025

• Thinning

Along a 1D intensity slice normal to the curve (non-maximum suppression)

• Direction of gradient

• How to chose the threshold?

Yu Xiang

How to chose the threshold?

- Hysteresis thresholding
 - Keep a high threshed H and a low threshold L
 - Any edge with strength < L is discarded
 - Any edge with strength > H is kept
 - An edge P with strength between L and H is kept only if there is a path of edges with strength > L connecting P to an edge of strength > H

Canny Edge Detector

J. Canny A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 8, No. 6, Nov 1986

Further Reading

- Chapter 7.2, Richard Szeliski
- J. Canny. A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 8, No. 6, Nov 1986