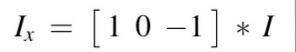
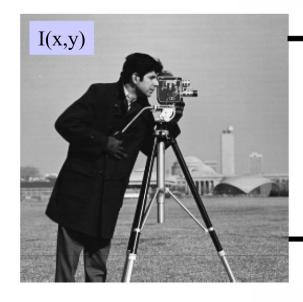


Smoothing

CS 4391 Introduction Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Recall Image Gradient



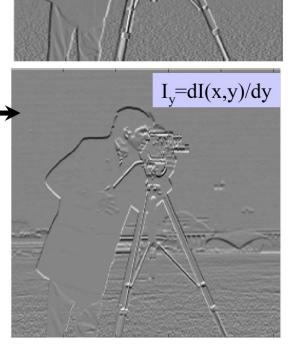


Partial derivative wrt x

Partial derivative wrt y

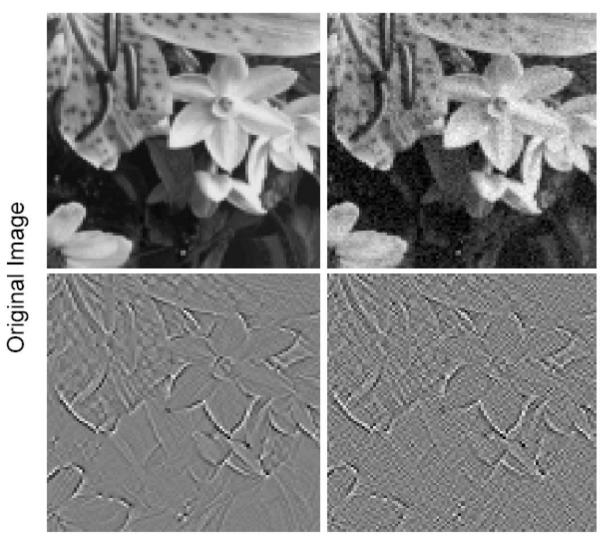
Note that there is a difference between convolving with a 1xn row filter and an nx1 col filter.

$$I_{y} = \left| \begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right| * I$$



 $I_x = dI(x,y)/dx$

Image Gradient and Noise

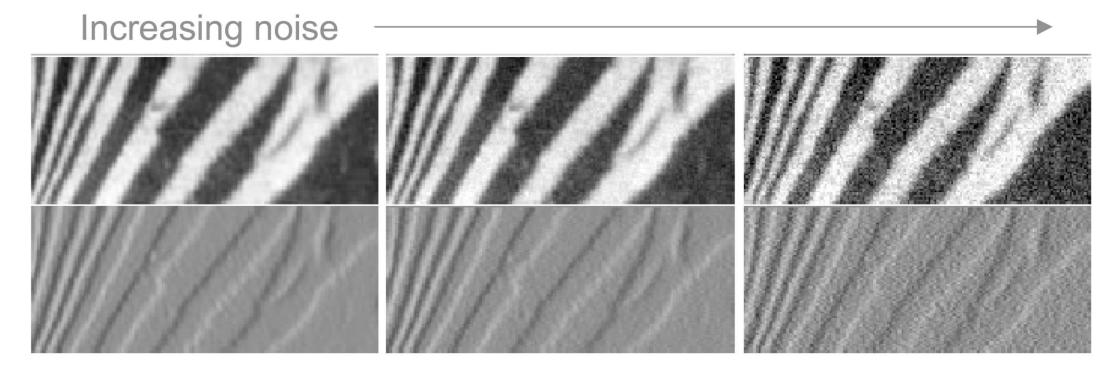


Noise Added

1/30/2025 Yu Xiang

Image Gradient and Noise

• First derivative operator is affected by noise



Numerical derivatives can amplify noise

Image Noise

• Fact: images are noises

- Examples:
 - Light fluctuations
 - Sensor noise
 - Quantization effect
 - Finite precision

Modeling Image Noise

Additive random noise

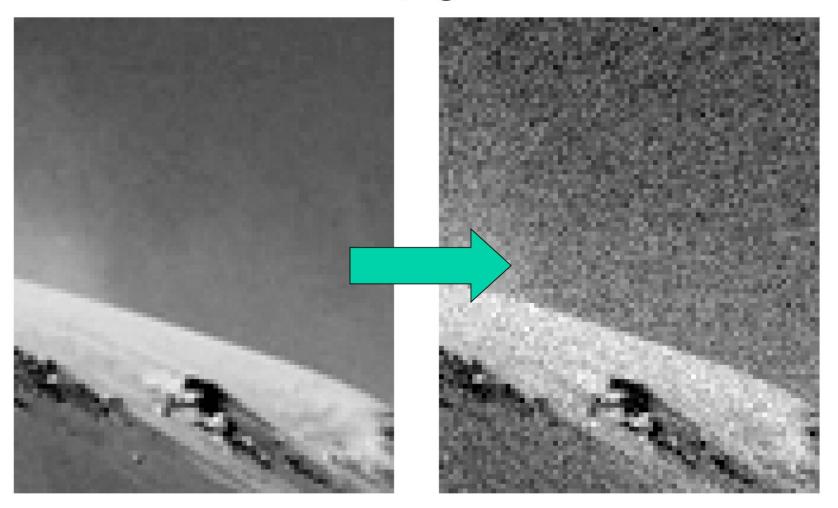
$$I(x,y) = s(x,y) + n_i$$

- n_i is i.i.d (independent and identically distributed)
- Zero-mean gaussian noise $\mathcal{N}(0,\sigma^2)$

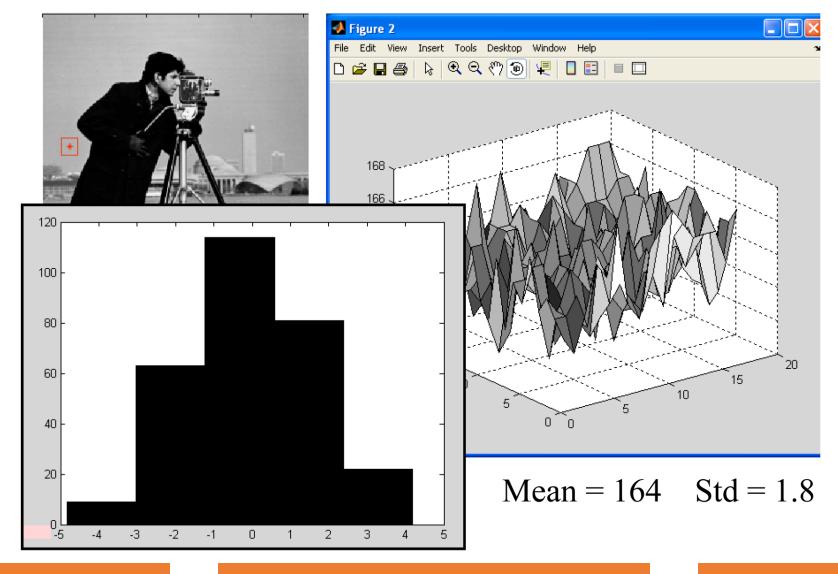
Gaussian distribution (normal distribution)
$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Modeling Image Noise

mean 0, sigma = 16

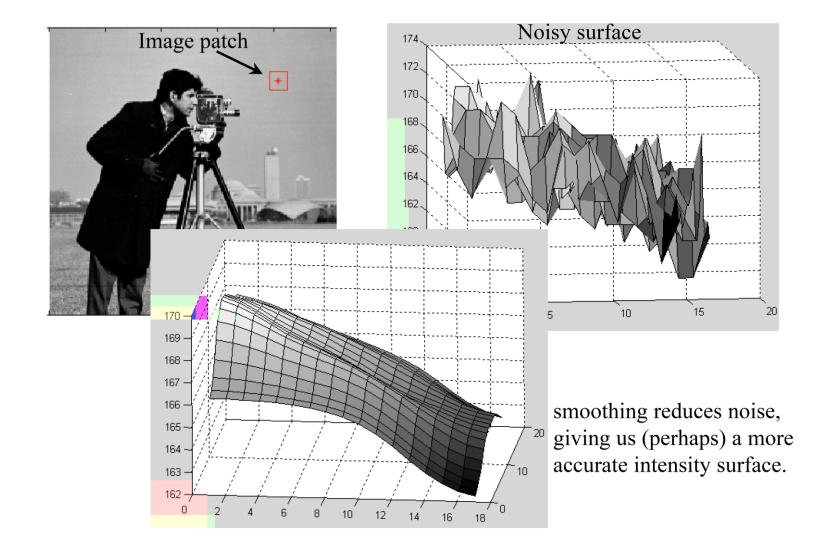


Empirical Evidence



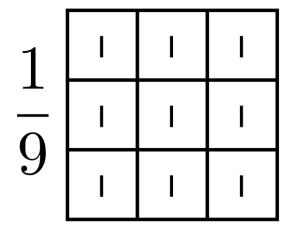
Smoothing

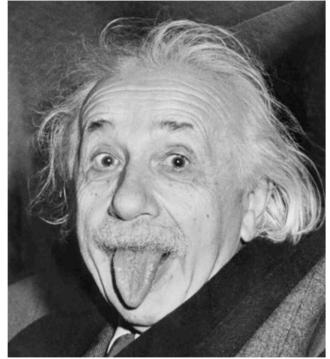
• Reduce noise

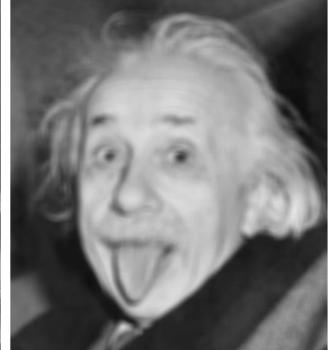


Box Filter

Replace a pixel with a local average (smoothing)







Why Average Reduces Noise

• Intuitive explanation: variance of noise in the average is smaller than variance of the pixel noise (assuming zero-mean Gaussian noise).

$$A = \frac{1}{m^2} \sum_{i=1}^{m^2} I_m$$

 $I_m = s_m + n_m$ with n being i.i.d. $G(0, \sigma^2)$

$$E(A) = \frac{1}{m^2} \sum s_m$$

$$var(A) = E\left[(A - E(A))^2\right] = \frac{\sigma^2}{m}$$

Smoothing with Box Filter

original

Convolved with 11x11 box filter

Drawback: smoothing reduces fine image detail

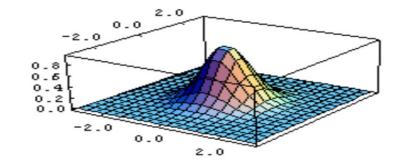
Needs to balance smoothing and keep image gradient

Gaussian Filter

A case of weighted averaging

The weights are from a 2D Gaussian distribution

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}}$$

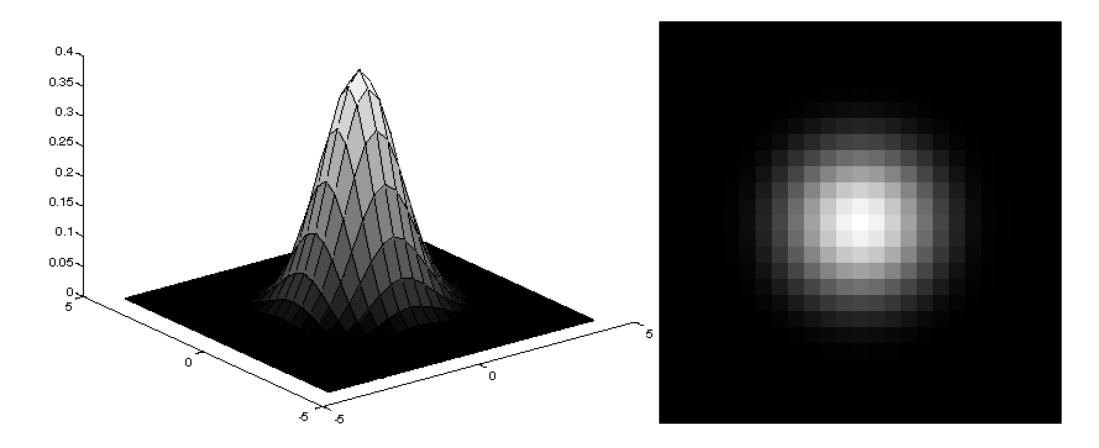


 Gives more weight at the central pixels and less weights to the neighbors

• The farther away the neighbors, the smaller the weight

Gaussian Filter

• An isotropic (circularly symmetric) Gaussian



Gaussian Smoothing Example

original

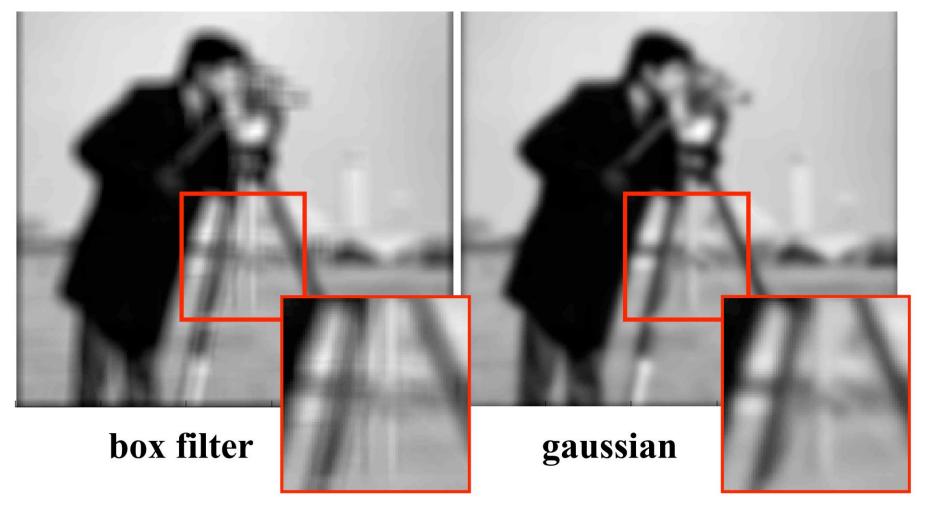
sigma = 3

Box vs. Gaussian

box filter

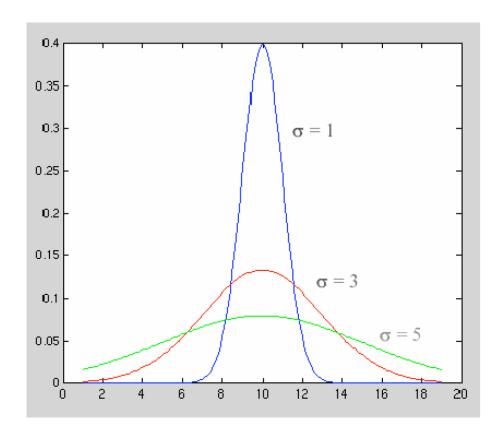
gaussian

Box vs. Gaussian



Note: Gaussian is a true low-pass filter, so won't cause high frequency artifacts

- The std. dev of the Gaussian determines the amount of smoothing
- Gaussian theoretically has infinite support, but we need a filter of finite size.
- For a 98.76% of the area, we need \pm -2.5 σ
- \pm 4 3 σ covers over 99% of the area.



Standard deviation $\,\sigma\,$

- Pixels at a distance of more than 3σ are small
- Typical filter dimension $\lceil 6\sigma \rceil \times \lceil 6\sigma \rceil$
- Large σ , large filter size

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}}$$

original

sigma = 1

original

sigma = 3

original

sigma = 10

Further Reading

• Chapter 3.2, 3.3, Richard Szeliski

 Multivariate normal distribution <u>https://en.wikipedia.org/wiki/Multivariate_normal_distribution</u>

OpenCV image smoothing https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering.html