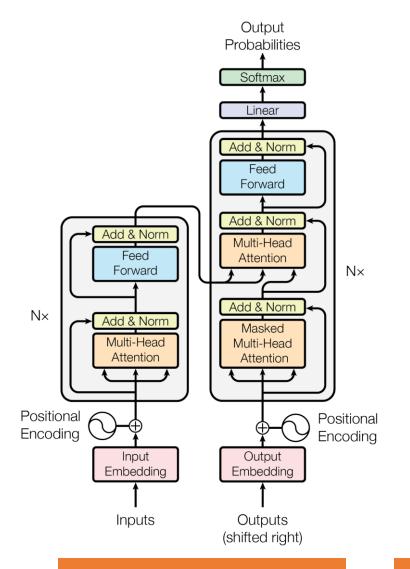


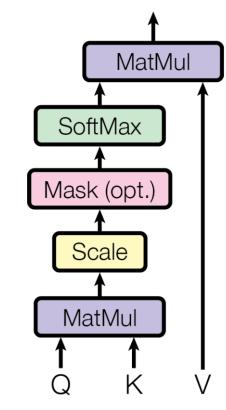
Transformers II

CS 4391 Introduction Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

No recurrence

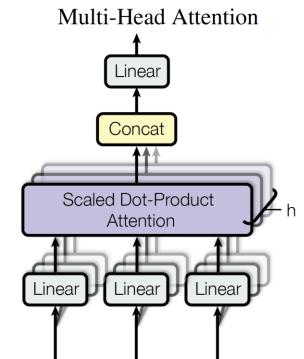
- Attention only
 - Global dependencies between input and output
 - More parallelization compared to RNNs





$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Attention is all you need. Vaswani et al., NeurIPS'17



 $head_{i} = Attention(QW_{i}^{Q}, KW_{i}^{K}, VW_{i}^{V})$

MultiHead(Q, K, V)

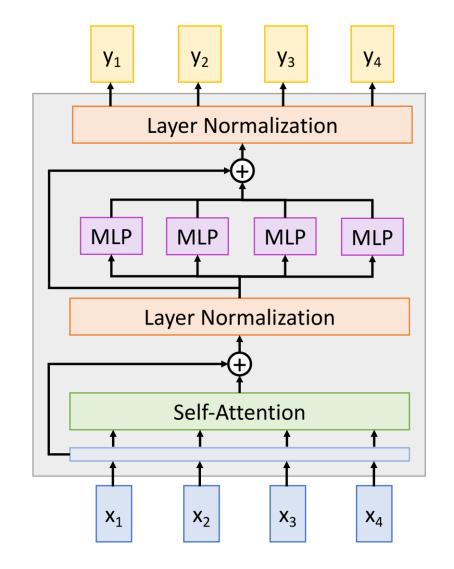
= Concat(head₁, ..., head_h) W^O

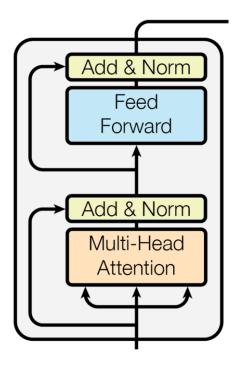
- Transformer block
 - Input: a set of vectors

$$n \times d_{\text{model}}$$

Output: a set of vectors

$$n \times d_{\text{model}}$$

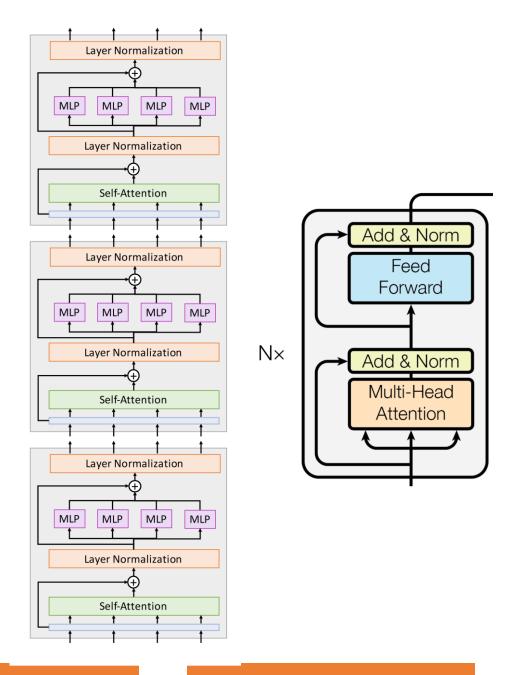




- Hyper-parameters
 - Number of blocks
 - Number of heads per block

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$

• Width (channels per head, FFN width)



Convert an image into a sequence of "token"

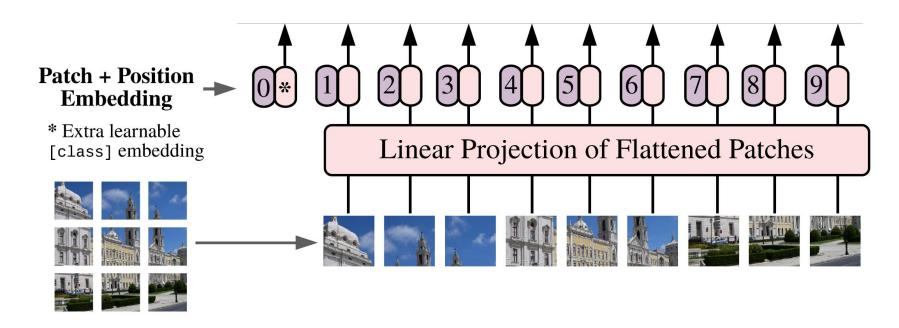
Input embedding by linear projection

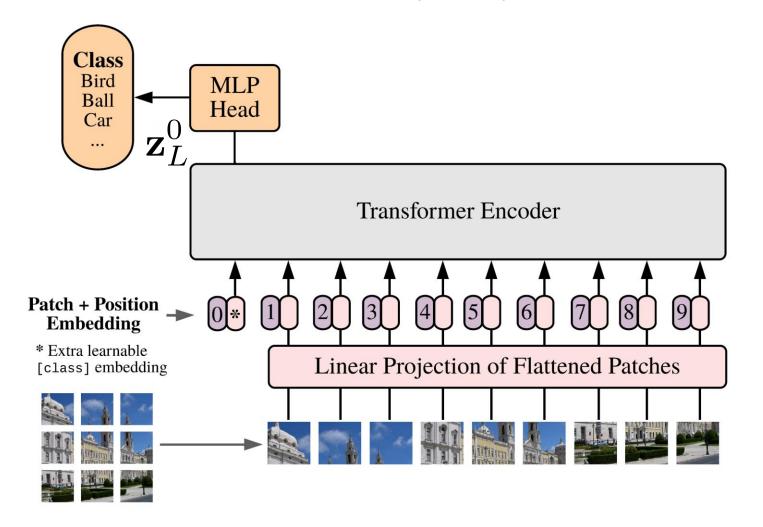
$$\mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}$$

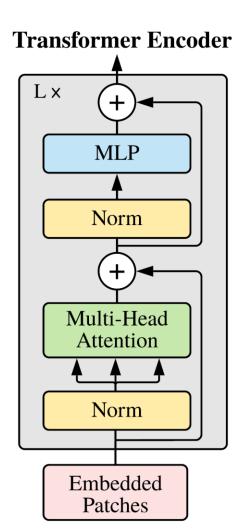
$$\mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D^2}$$

- Adding positional embedding
- ullet Prepend a learnable embedding ${f z}_0^0$

 \mathbf{z}_L^0 Will be used as the image representation After L attention layers

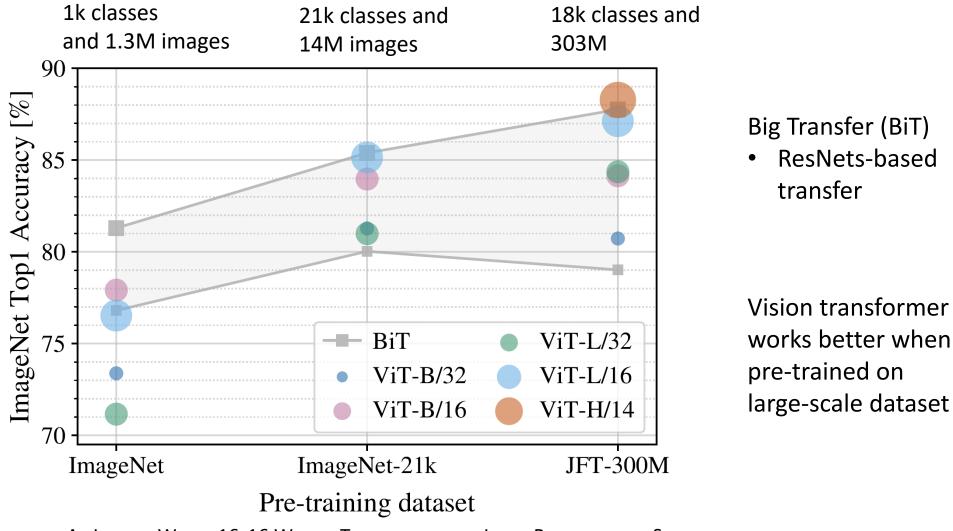






- Pretrain on a large-scale dataset
- Fine-tune on different tasks

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M



ViT vs CNN

Stage 3: 256 x 14 x 14

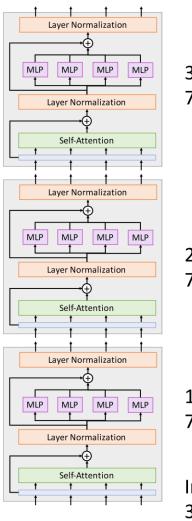
Stage 2: 128 x 28 x 28

Stage 1: 64 x 56 x 56

Input: 3 x 224 x 224

3x3 conv, 512 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 Input

Hierarchical features are useful since objects in images can occur at various scales



3rd block: 768 x 14 x 14

2nd block: 768 x 14 x 14 In a ViT, all blocks have same resolution and number of channels (Isotropic architecture)

1st block:

768 x 14 x 14

Input:

ViT

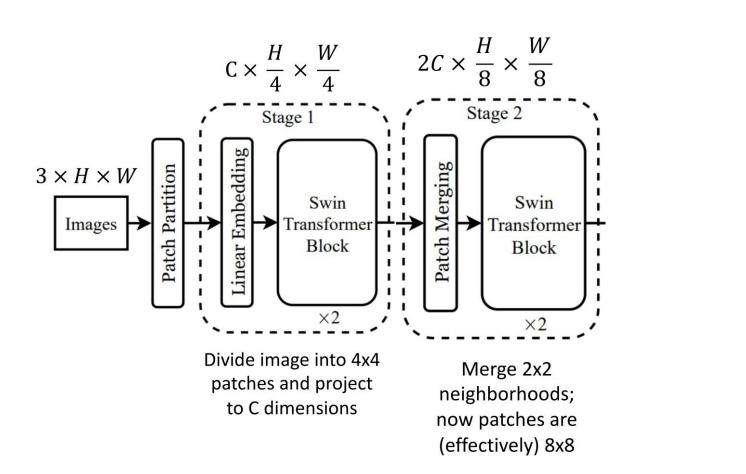
3 x 224 x 224

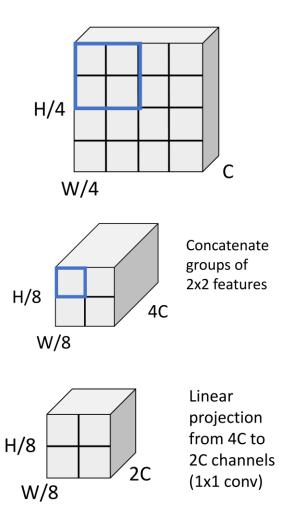
CNN

4/22/2025

Yu Xiang

11





Liu et al, "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows", CVPR 2021

Problem: 224x224 image with 56x56 grid of 4x4 patches: attention matrix $2C \times \frac{H}{8} \times \frac{W}{8}$ $4C \times \frac{H}{16} \times \frac{W}{16}$ $8C \times \frac{H}{32} \times \frac{W}{32}$ $C \times \frac{H}{4} \times \frac{W}{4}$ has $56^4 = 9.8M$ entries Stage 4 Stage 3 Stage 1 Embedding Merging erging Merging $3 \times H \times W$ Swin Swin Swin Swin Transformer Transformer Transformer Images → Transformer Patch Block Block Block Block 1.1 1.1 1.1 $\times 2$ $\times 6$

Solution: don't use full attention, instead use attention over patches

Divide image into 4x4 patches and project to C dimensions

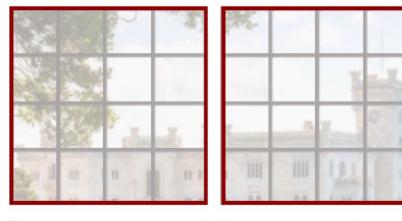
Merge 2x2 neighborhoods; now patches are (effectively) 8x8

Merge 2x2 neighborhoods; now patches are (effectively) 16x16

Merge 2x2 neighborhoods; now patches are (effectively) 32x32

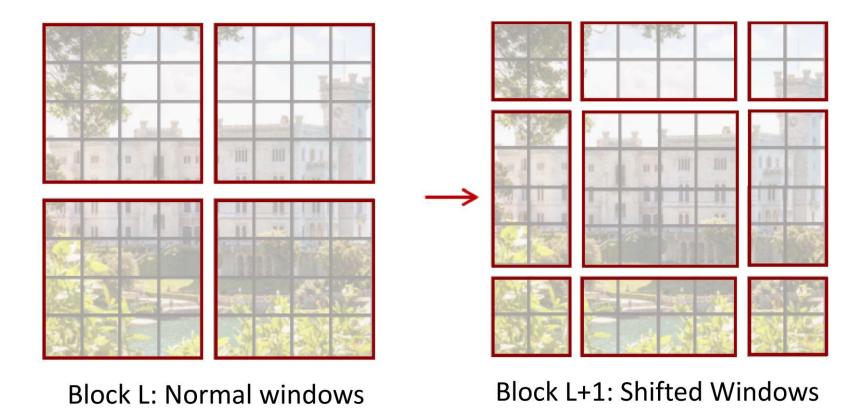
Liu et al, "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows", CVPR 2021

- With H x W grid of tokens, each attention matrix is H*H*W*W – quadratic in image size
- Window attention
 - Divide the image into windows of M x M tokens (here M=4)
 - Only compute attention within each window
 - Total size of attention matrices M⁴(H/M)(W/M) = M²HW
 - Linear in image size for fixed M! Swin uses M=7 throughout the network

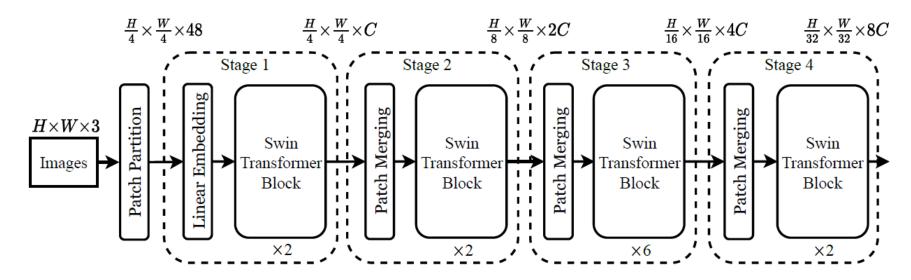


Problem: tokens only interact with other tokens within the same window; no communication across windows

- Shifted Window Attention
- Solution: Alternate between normal windows and shifted windows in successive Transformer blocks

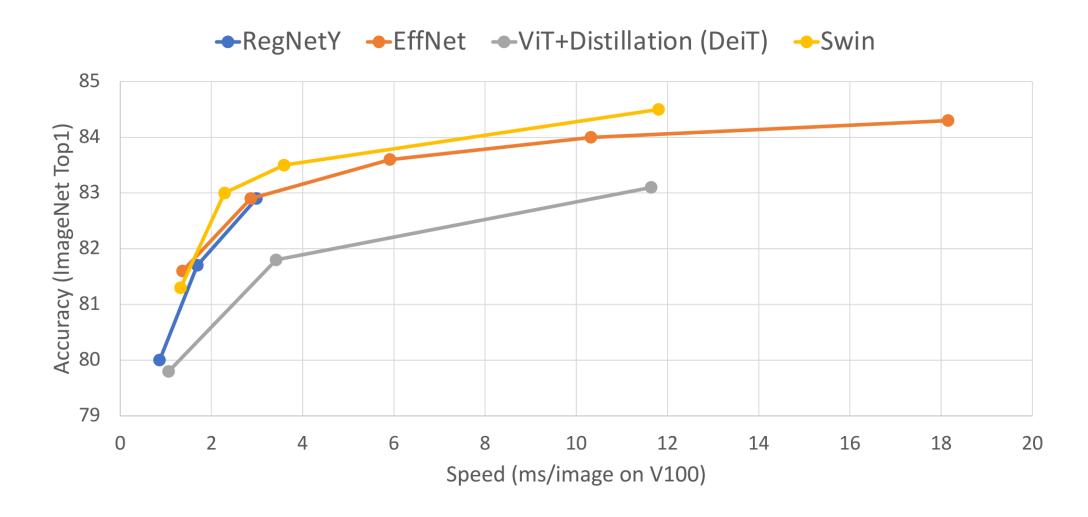


Architecture variants



- Swin-T: C = 96, layer numbers = $\{2, 2, 6, 2\}$
- Swin-S: C = 96, layer numbers = $\{2, 2, 18, 2\}$
- Swin-B: C = 128, layer numbers = $\{2, 2, 18, 2\}$
- Swin-L: C = 192, layer numbers = $\{2, 2, 18, 2\}$

4/22/2025



Summary

- Transformers
 - Can capture long-distance dependencies (global attention)
 - Computationally efficient, more parallelizable
- Vision transformers
 - Works better when pre-trained on large scale datasets (e.g., 300M images)
 - Swin transformer

Further Reading

 Transformer: Attention is all you need https://arxiv.org/abs/1706.03762

 Vision transformer: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/abs/2010.11929

 Swin Transformer: Hierarchical Vision Transformer using Shifted Windows https://arxiv.org/abs/2103.14030