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Transformer

• No recurrence 

• Attention only
• Global dependencies between input and output

• More parallelization compared to RNNs
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Transformer
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Attention is all you need. Vaswani et al., NeurIPS’17



Transformer

• Transformer block
• Input: a set of vectors

• Output: a set of vectors
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Transformer

• Hyper-parameters
• Number of blocks

• Number of heads per block

• Width (channels per head, FFN width)
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Vision Transformer (ViT)

• Convert an image into a sequence of “token”

• Input embedding by linear projection
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AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. Dosovitskiy et al., ICLR’21



Vision Transformer (ViT)

• Adding positional embedding

• Prepend a learnable embedding
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AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. Dosovitskiy et al., ICLR’21

Will be used as the 
image representation

After L attention layers



Vision Transformer (ViT)
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AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. Dosovitskiy et al., ICLR’21



Vision Transformer (ViT)

• Pretrain on a large-scale dataset

• Fine-tune on different tasks
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AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. Dosovitskiy et al., ICLR’21



Vision Transformer (ViT)
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AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. Dosovitskiy et al., ICLR’21

Big Transfer (BiT)
• ResNets-based 

transfer

Vision transformer 
works better when 
pre-trained on 
large-scale dataset

1k classes
and 1.3M images

21k classes and 
14M images

18k classes and
303M



ViT vs CNN

4/22/2025 Yu Xiang 11

CNN ViT

In a ViT, all blocks have
same resolution and
number of channels
(Isotropic architecture)

Hierarchical features 
are useful since 
objects in images
can occur at various 
scales



Hierarchical ViT: Swin Transformer
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Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Hierarchical ViT: Swin Transformer
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Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Problem: 224x224 image
with 56x56 grid of 4x4
patches: attention matrix
has 564 = 9.8M entries

Solution: don’t use full
attention, instead use
attention over patches



Hierarchical ViT: Swin Transformer

• With H x W grid of tokens, each attention 
matrix is H*H*W*W – quadratic in image size

• Window attention
• Divide the image into windows of M x M tokens 

(here M=4)

• Only compute attention within each window

• Total size of attention matrices M4(H/M)(W/M) = M2HW

• Linear in image size for fixed M! Swin uses M=7 
throughout the network
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Hierarchical ViT: Swin Transformer
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Hierarchical ViT: Swin Transformer

• Shifted Window Attention

• Solution: Alternate between normal windows and shifted windows in successive Transformer blocks
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Hierarchical ViT: Swin Transformer

• Architecture variants
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Hierarchical ViT: Swin Transformer
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Summary

• Transformers
• Can capture long-distance dependencies (global attention)

• Computationally efficient, more parallelizable

• Vision transformers
• Works better when pre-trained on large scale datasets (e.g., 300M images)

• Swin transformer
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Further Reading

• Transformer: Attention is all you need 
https://arxiv.org/abs/1706.03762

• Vision transformer: An Image is Worth 16x16 Words: Transformers for 
Image Recognition at Scale https://arxiv.org/abs/2010.11929

• Swin Transformer: Hierarchical Vision Transformer using Shifted 
Windows https://arxiv.org/abs/2103.14030
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