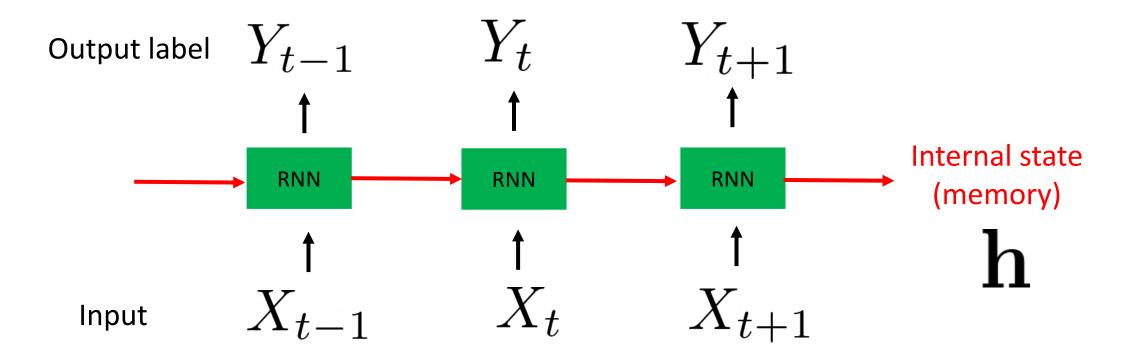
Recurrent Neural Networks II

CS 4391 Introduction Computer Vision Professor Yu Xiang The University of Texas at Dallas

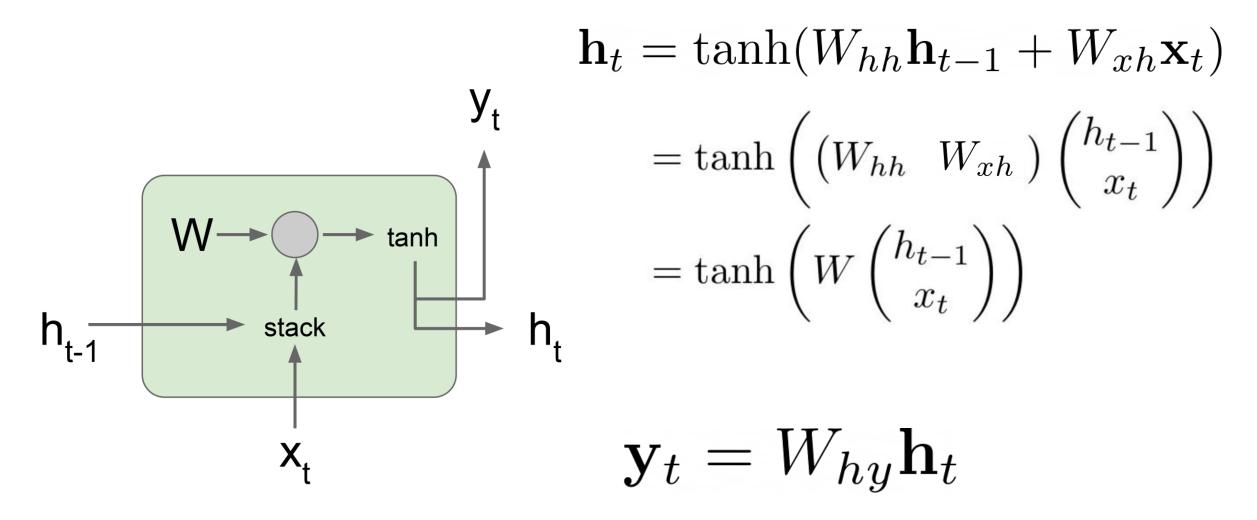
Some slides of this lecture are courtesy Stanford CS231n

NIN

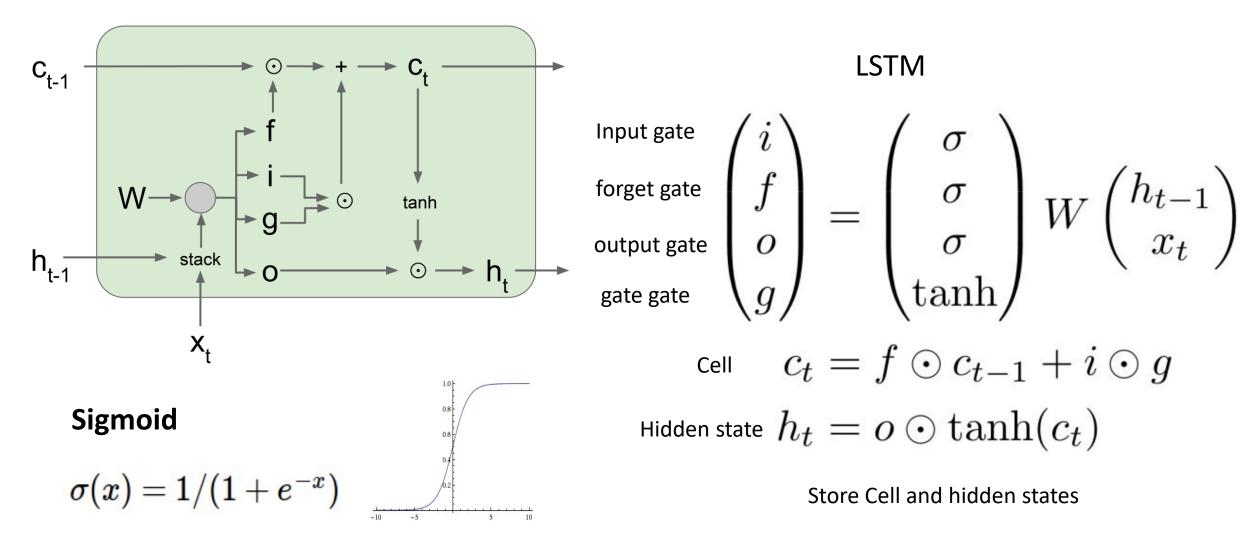
Recurrent Neural Networks



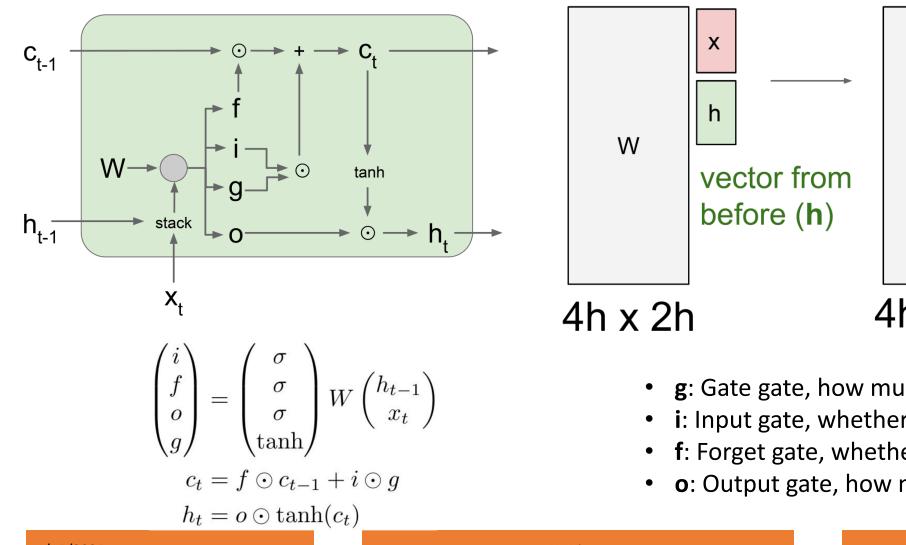
Vanilla RNN

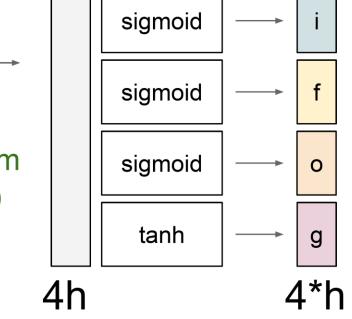


Long Short Term Memory (LSTM)



Long Short Term Memory (LSTM)





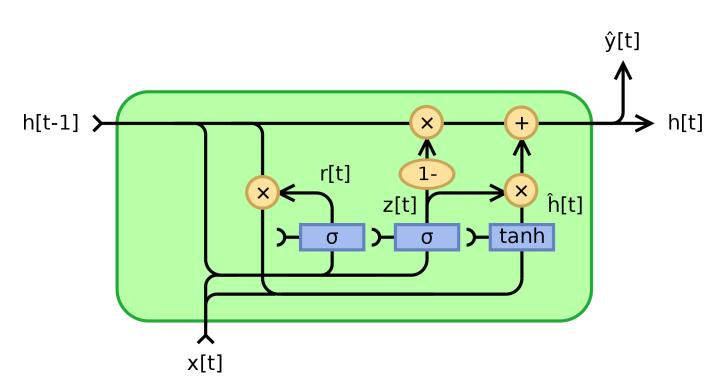
- g: Gate gate, how much to write to cell
- i: Input gate, whether to write to cell
- **f**: Forget gate, whether to erase cell
- **o**: Output gate, how much to reveal cell

Long Short Term Memory (LSTM)

- Make the RNN easier to preserve information over many steps
 - E.g., f = 1 and i = 0
 - This is difficult for vanilla RNN
- LSTM does not guarantee that there is no vanishing or exploding gradient
- It provides an easier way to learn longdistance dependencies

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Gated Recurrent Unit (GRU)



https://en.wikipedia.org/wiki/Gated_recurrent_unit

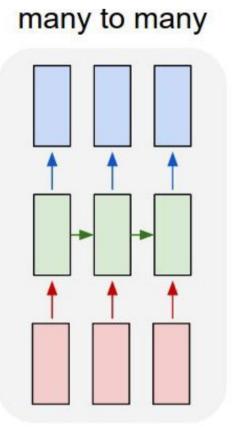
$$egin{aligned} & z_t = \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ & r_t = \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ & \hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) \ & h_t = (1-z_t) \odot h_{t-1} + z_t \odot \hat{h}_t \end{aligned}$$

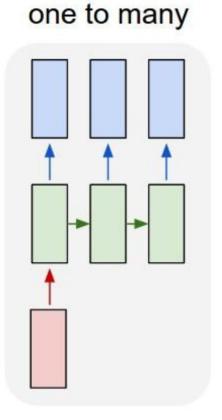
- x_t : input vector
- h_t : output vector
- \hat{h}_t : candidate activation vector
- z_t : update gate vector
- r_t : reset gate vector
- ullet W, U and b: parameter matrices and vector

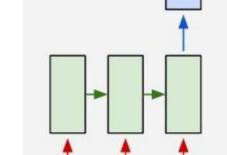
GRUs vs. LSTMs

- Both have a forget gate
- GRU has fewer parameters, no output gate
- GRUs have similar performance compared to LSTMs, have shown better performance on certain datasets

Recurrent Neural Networks

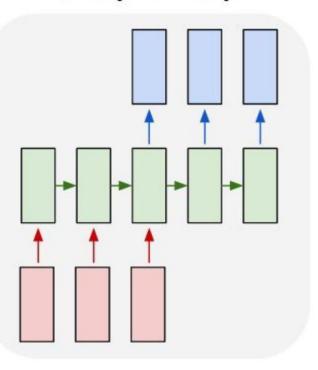






many to one

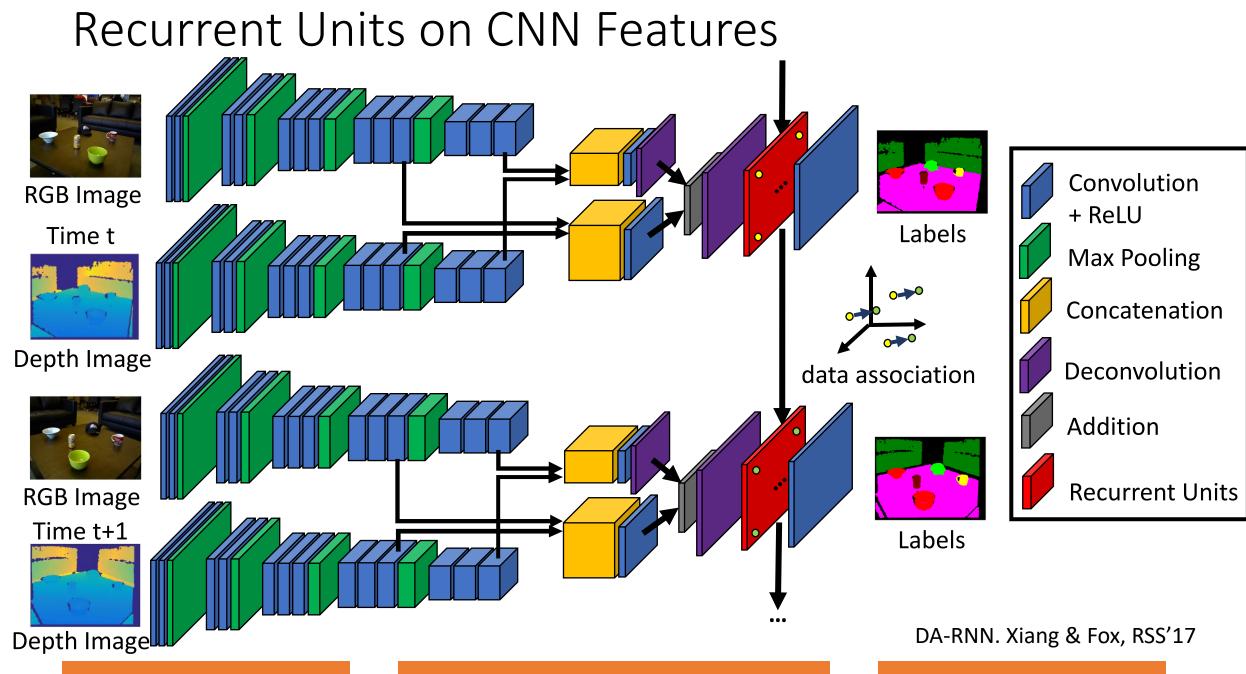
many to many



E.g., action recognition on video frames

E.g., image captioning, image -> sequences of words

E.g., action prediction, sequences of frames -> action class E.g., Video Captioning Sequence of video frames -> caption



4/15/2025

Yu Xiang

10

Machine Translation

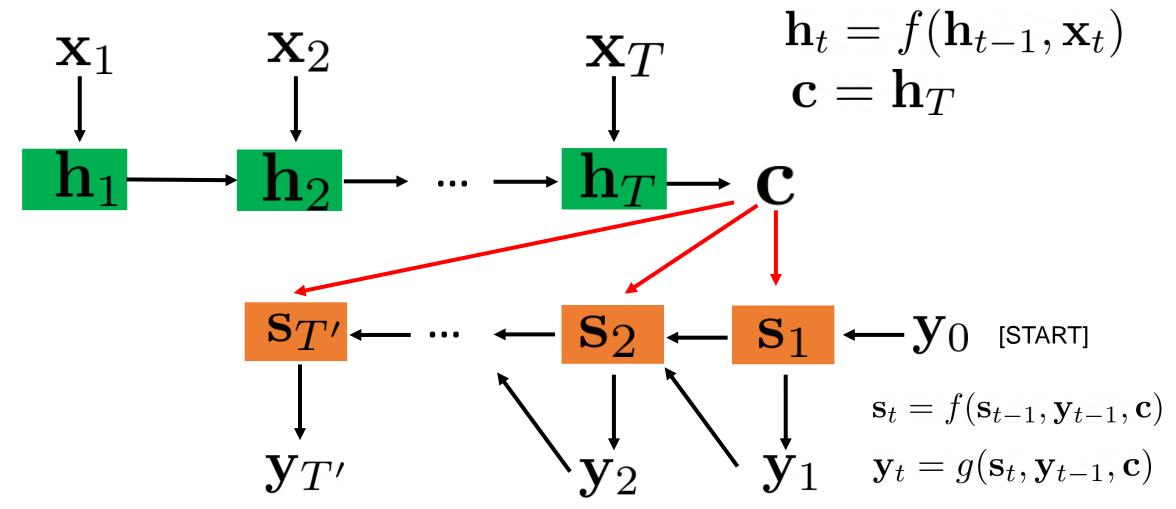
- Translate a phrase from one language to anther
 - E.g., English phrase to French phrase

	English	► →	French -
Google Translation	UT Dallas is a rising public research university in the heart of DFW.	×	UT Dallas est une université de recherche publique en plein essor au cœur de DFW.

15 words

Machine Translation

RNN Encoder-Decoder



Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. Cho et al., EMNLP'14

RNN Encoder-Decoder

- Encoder $\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$ $\mathbf{c} = \mathbf{h}_T$
- Decoder $\mathbf{s}_t = f(\mathbf{s}_{t-1}, \mathbf{y}_{t-1}, \mathbf{c}) \quad \mathbf{y}_t = g(\mathbf{s}_t, \mathbf{y}_{t-1}, \mathbf{c})$
- Pros
 - Can deal with different input size and output size
- Cons
 - The fixed length embedding **C** cannot handle long sentence well (long-distance dependencies)

Limitations of RNNs

• The sequential computation of hidden states precludes parallelization within training examples

$$\longrightarrow \mathbf{h}_{t-1} \longrightarrow \mathbf{h}_t \longrightarrow \mathbf{h}_{t+1} \longrightarrow$$

- Cannot handle long sequences well
 - Truncated back-propagation due to memory limits
 - Difficult to capture dependencies in long distances

Summary

- RNNs can be used for sequential data to capture dependencies in time
- LSTMs and GRUs are better then vanilla RNNs
- It is difficult to capture long-term dependencies in RNNs
- Use transformers (in future lectures)

Further Reading

- Stanford CS231n, lecture 10, Recurrent Neural Networks http://cs231n.stanford.edu/
- Long Short Term Memory <u>https://www.researchgate.net/publication/13853244 Long Short-</u> <u>term Memory</u>
- Gated Recurrent Units <u>https://arxiv.org/pdf/1412.3555.pdf</u>