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Some slides of this lecture are courtesy Stanford CS231n



Recurrent Neural Networks
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Vanilla RNN
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Long Short Term Memory (LSTM)
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Long Short Term Memory (LSTM)
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• g: Gate gate, how much to write to cell
• i: Input gate, whether to write to cell
• f: Forget gate, whether to erase cell
• o: Output gate, how much to reveal cell



Long Short Term Memory (LSTM)

• Make the RNN easier to preserve 
information over many steps
• E.g., f = 1 and i = 0

• This is difficult for vanilla RNN

• LSTM does not guarantee that there is no 
vanishing or exploding gradient

• It provides an easier way to learn long-
distance dependencies
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Gated Recurrent Unit (GRU)
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https://en.wikipedia.org/wiki/Gated_recurrent_unit

https://en.wikipedia.org/wiki/Gated_recurrent_unit


GRUs vs. LSTMs

• Both have a forget gate

• GRU has fewer parameters, no output gate

• GRUs have similar performance compared to LSTMs, have shown 
better performance on certain datasets
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Recurrent Neural Networks
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E.g., action recognition 
on video frames

E.g., image captioning, 
image -> sequences of 
words

E.g., action prediction, 
sequences of frames -> 
action class

E.g., Video Captioning
Sequence of video frames ->
caption



Recurrent Units on CNN Features
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Machine Translation

• Translate a phrase from one language to anther
• E.g., English phrase to French phrase
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13 words

Google 
Translation

15 words



Machine Translation

• Input

• Output
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Not one to one mapping

RNN



RNN Encoder-Decoder
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…

[START]…

Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. Cho et al., EMNLP’14



RNN Encoder-Decoder

• Encoder

• Decoder

• Pros
• Can deal with different input size and output size

• Cons
• The fixed length embedding       cannot handle long sentence well (long-

distance dependencies)
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Limitations of RNNs

• The sequential computation of hidden states precludes parallelization 
within training examples

• Cannot handle long sequences well
• Truncated back-propagation due to memory limits

• Difficult to capture dependencies in long distances
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Summary

• RNNs can be used for sequential data to capture dependencies in 
time

• LSTMs and GRUs are better then vanilla RNNs

• It is difficult to capture long-term dependencies in RNNs

• Use transformers  (in future lectures)
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Further Reading

• Stanford CS231n, lecture 10, Recurrent Neural Networks 
http://cs231n.stanford.edu/

• Long Short Term Memory 
https://www.researchgate.net/publication/13853244_Long_Short-
term_Memory

• Gated Recurrent Units https://arxiv.org/pdf/1412.3555.pdf
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