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Some slides of this lecture are courtesy Stanford CS231n



Visual Perception vs. Computational Perception
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Image

Neural 
Network

High-level information
• Depth
• Motion
• Object classes
• Object poses
• Etc.



Mathematic Models 

• Try to model the human brain with computational models, e.g., 
neural networks
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Image Object class



Mathematic Models 

• What is the form of the function              ?
• No idea!

• Concatenate simple functions (neurons)
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Dog



Neural Network: Concatenation of functions
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Linear score function:

2-layer Neural Network
      

x hW1 sW2

3072 100 10

Non-linearity

Need to learn the weights!



Frank Rosenblatt’s Perceptron
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Frank Rosenblatt 
(1928-1971)



Activation Functions
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Rectified Linear Unit (ReLU)    
max(0,x)

2-layer Neural Network
      

Introduce non-linearity to the network



Activation Functions
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Sigmoid

ReLU    max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU Exponential 

Linear Unit

tanh    tanh(x)



Fully Connected Layer
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Fully Connected Layer

• What is the drawback of only using fully connected layers?

• Consider an image with 640 x 480
• x is with dimension 307,200

• The weight matrix of the fully connect layer is too large
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Convolutional Layers

• Consist of convolutional filters

• Share weights among different image locations
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Gaussian Filter
Learn the weights!



Convolutional Neural Networks
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Input image

Convolutional
layer

Fully connected layer

Output vector

ReLU
layer

Pooling
layer

…

(translation invariant)



Convolutional Neural Networks
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[LeNet-5, LeCun 1980]
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32x32x3 image

width

height

depth
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Convolutional Layer



32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”
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Convolutional Layer



32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the filter 
and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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Convolutional Layer



32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial 
locations

activation map

1

28

28

17

Convolutional Layer



7

7

A closer look at spatial dimensions:

18

7x7 input (spatially)
assume 3x3 filter, with stride 1

Convolutional Layer
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7x7 input (spatially)
assume 3x3 filter, with stride 1

Convolutional Layer
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assume 3x3 filter, with stride 1

Convolutional Layer
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7x7 input (spatially)
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7x7 input (spatially)
assume 3x3 filter, with stride 1

Convolutional Layer
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7x7 input (spatially)
assume 3x3 filter, with stride 1

Convolutional Layer
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A closer look at spatial dimensions:
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7x7 input (spatially)
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A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter, with stride 1

Convolutional Layer



7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter, with stride 1

=> 5x5 output

Convolutional Layer



7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter, with stride 2

Convolutional Layer
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A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter, with stride 2

Convolutional Layer



7

7

A closer look at spatial dimensions:

30

7x7 input (spatially)
assume 3x3 filter, with stride 2

=> 3x3 output!

Convolutional Layer



7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter, with stride 3

Convolutional Layer



7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter, with stride 3

Convolutional Layer

doesn’t fit! 
cannot apply 3x3 filter on 7x7 
input with stride 3.



N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33
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Convolutional Layer



In practice: Common to zero 
pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is 
the output?

(recall:)
(N - F) / stride + 1

0 0 0 0 0 0

0

0

0

0
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Convolutional Layer
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0 0 0 0 0 0

0

0

0

0

In practice: Common to zero 
pad the border

Convolutional Layer

7x7 output!

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is 
the output?



in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding 
with (F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3

36

0 0 0 0 0 0

0

0

0

0

In practice: Common to zero 
pad the border

Convolutional Layer



32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial 
locations

activation map

1

28

28
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Convolutional Layer



32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial 
locations

activation maps

1

28

28

consider a second, green filter
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Convolutional Layer



32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 
5x5 filters, we’ll get 6 
separate activation maps

We stack these up to get a “new image” of size 28x28x6!
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Convolutional Layer



Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation 
functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters

40



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation 
functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters

28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

41



Input image

Convolutional
layer

Fully connected layer

Output vector

Convolutional Neural Networks

42

ReLU
layer

Pooling
layer

…



- makes the representations smaller and more manageable 
- operates over each activation map independently:
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Pooling Layer



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4
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Max Pooling Layer



Further Reading

• Stanford CS231n, lecture 5, Convolutional Neural Networks 
http://cs231n.stanford.edu/schedule.html

• Deep learning with PyTorch 
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

• AlexNet (2012): 
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-
Abstract.html

• Vgg16 (2014): https://arxiv.org/abs/1409.1556

• GoogleNet (2014): https://arxiv.org/abs/1409.4842

• ResNet (2015): https://arxiv.org/abs/1512.03385
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