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Recap Camera Models

* Camera projection matrix

P = K[RJt]
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Back-projection to a Ray in the World Coordinate

 The camera center O is on the ray
1 . P_l_X is on the ray
7 X
pt =pi(pphH)-!

Pseudo-inverse

P a K[R‘t] The ray can be written as
x =PX X(A) =(1—-NP"x+ O

* A pixel on the image backprojects to a rayin 3D

Camera Coordinates




Back-projection to a 3D Point in Camera Coordinates
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Back-projection to a 3D Point in Camera Coordinates

Camera Coordinates
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The Pinhole Camera Model
e Camera projection matrix: intrinsics and extrinsics

P = K[R|t]

3X 3x4
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Camera extrinsics:
rotation and translation

Camera intrinsics




Camera Calibration

e Estimate the camera intrinsics and camera extrinsics P m— K[R‘t]

 Why is this useful?
* If we know K and depth, we can compute 3D points in camera frame

* |n stereo matching to compute depth, we need to know focal length

e Camera pose tracking is critical in SLAM (Simultaneous Localization and
Mapping)




Camera Calibration

e Estimate the camera intrinsics and camera extrinsics P m— K[R‘t]

* |[dea: using images from the camera with a known world coordinate
frame
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Camera Calibration
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* Unknowns

Camera intrinsics B

Camera extrinsics:
rotation and translation

R.T

e Knowns

World coordinates P, ..., P,

Pixel coordinates  P1,...,Pn
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* We need 11 equations
* 6 correspondences
* More correspondences are better




A Linear Approach to Camera Calibration
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A Linear Approach to Camera Calibration

* Given n correspondences p;

ul(mgPl)—mlPl =3
vl(mgPl)—mzPl =3

2n equations

Un(m3Py,)—mq P, =0
U (msP,)—ms P, =0

OT PlT —’Ulpir

PT 0T —u,PT
_OT Pr —v, P!

2n X 12

P07 —u Pl

ma | =Pm =0

12 x 1

How to solve this linear system?




Linear System

Pm =20

2n x 12 12 x 1

* Find non-zero solutions
* If mis a solution, kxm is also a solution for k € R

» We can seek a solution ||m|| =1
min |Pm||
Subjectto‘ mH =




Singular Value Decomposition

The SVD is a factorization of a M XN matrix into
A=UXVT

where U is a mXm orthogonal matrix, VT isanxn orthogonal matrix and X
is a mXn diagonal matrix.

For a square matrix (m = n): 01 = 0y = 03 ...
T non-negative real numbers on
P ek 01 e V7o the diagonal
A=|u .. u, ‘ S
: : On VE;




Linear System
min ||Pm)|
Im|| =1

Singular value decomposition (SVD)

p—yUpyT |Pm|| = ||[UDV! m]| = |DV'm|

|m|| = [[VEm|  min[DVEml s [vTm] =1

et ) = Vim min||Dy| s |yl =1 y=10,0,...,0,1)"
m = Vy m is the last column of V




Linear System

Pm=20

2n x 12 12 x 1

Solution: P p— UDVT SVD decomposition of P

min ||Pm)| N

Subjectto‘mH — 1 2n X 2n 2n x 12 12 x 12

m is the last column of \V/  A5.3 in Multiview Geometry in

Computer Vision




A Linear Approach to Camera Calibration

Pm =20

m is the last column of V

m —> M Up to scale

pi = MP;, = K[R|T|P

How to extract K, Rand T from M?
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A Linear Approach to Camera Calibration
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A Linear Approach to Camera Calibration
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Camera Calibration with a 2D Plane

Harris Corner Detection

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI, 2000.




Calibration Patterns
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https://boofcv.org/index.php?title=Tutorial_Camera_Calibration
https://github.com/arpg/Documentation/tree/master/Calibration

Further Reading

» Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition,
Lecture 3 https://web.stanford.edu/class/cs231a/syllabus.html

* A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI. 2000.
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-

71.pdf

* EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., [JCV’09.
https://www.tugraz.at/fileadmin/user upload/Institute/ICG/Images/team lepeti
t/publications/lepetit ijcv08.pdf
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