Geometric Primitives and Transformations

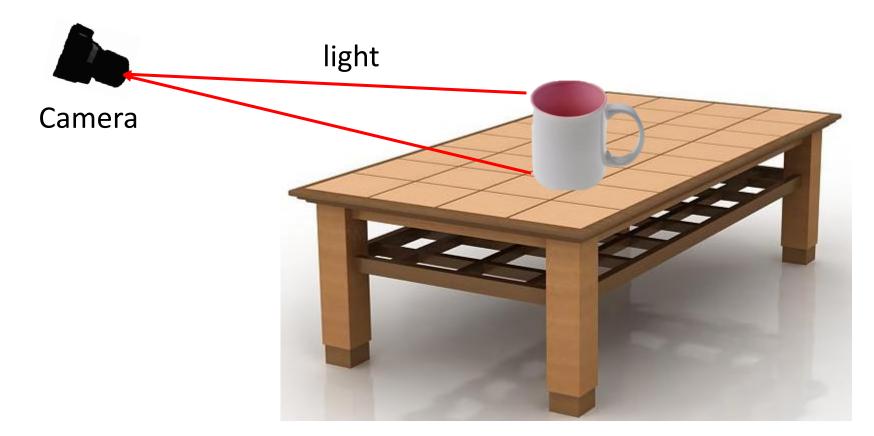
CS 4391 Introduction Computer Vision

Professor Yu Xiang

The University of Texas at Dallas

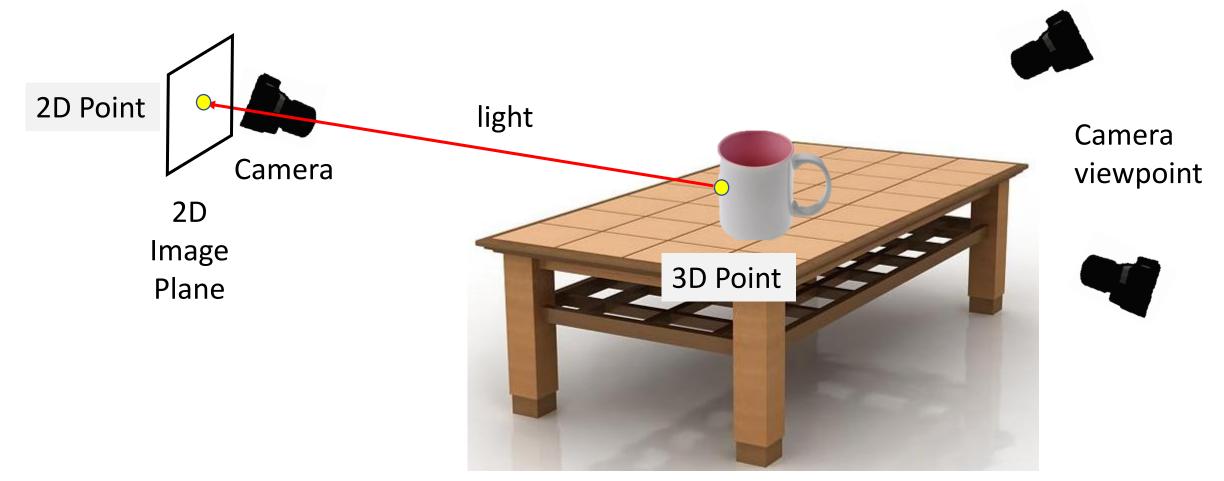
NIV

How are Images Generated?



3D World

Geometry in Image Generation



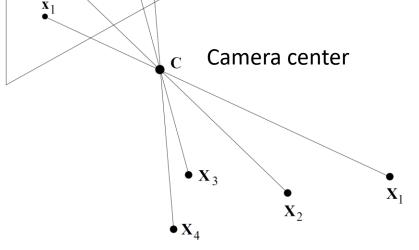
3D World

2D Points and 3D Points

image plane

• A 2D point is usually used to indicate pixel coordinates of a pixel

$$\mathbf{x} = (x, y) \in \mathcal{R}^2 \qquad \mathbf{x} =$$



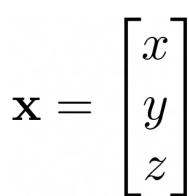
 $\mathbf{\mathbf{v}} \mathbf{X}_{\mathbf{3}}$

X

• x₂

• A 3D point in the real world

$$\mathbf{x} = (x, y, z) \in \mathcal{R}^3$$



 ${\mathcal X}$

 \boldsymbol{y}

Homogeneous Coordinates

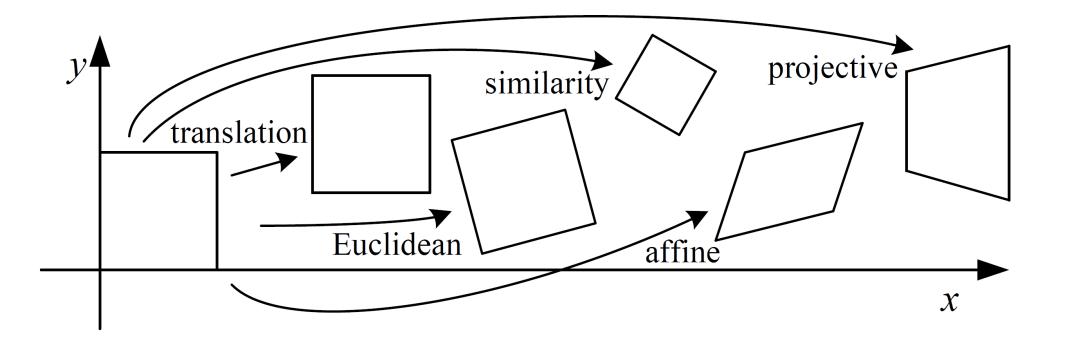
$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = w \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
homogeneous image coordinates homogeneous scene coordinates Up to scale

Conversion

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

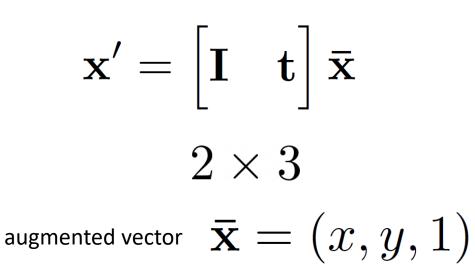
2D Transformations



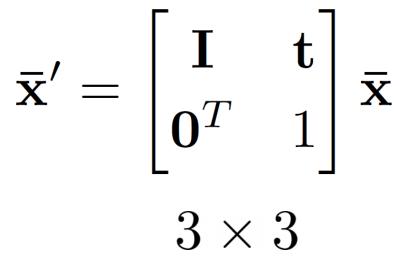
2D Translation

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} t_x\\t_y \end{bmatrix}$$

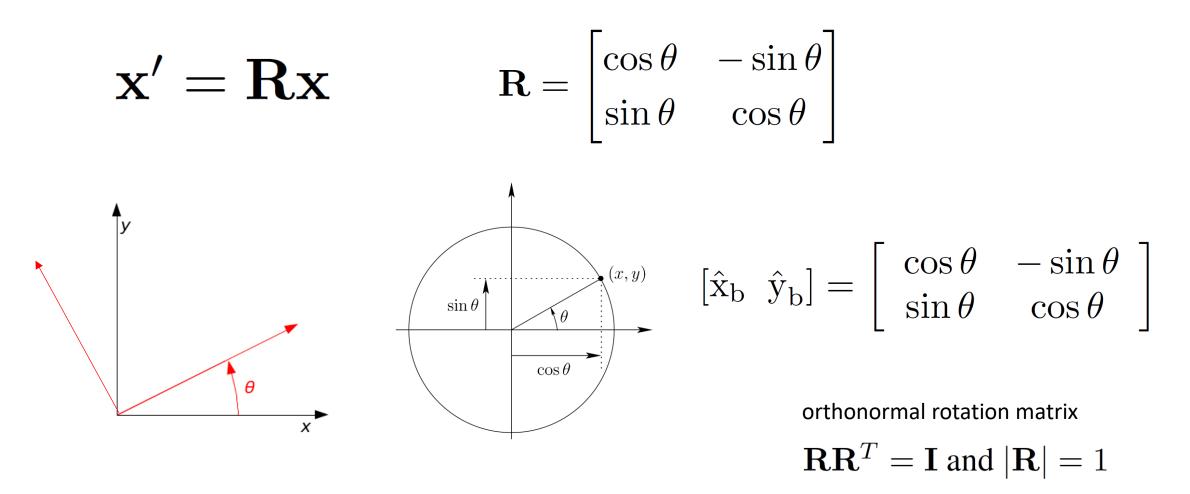
$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$



Homogeneous coordinate



2D Rotation



2D Euclidean Transformation

• 2D Rotation + 2D translation

$$\mathbf{x'} = \mathbf{R}\mathbf{x} + \mathbf{t}$$
 $\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

2D Euclidean Transformation

• 2D Rotation + 2D translation

$$\mathbf{x'} = \mathbf{R}\mathbf{x} + \mathbf{t}$$
 $\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

$$\mathbf{x}' = \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \bar{\mathbf{x}}$$
$$2 \times 3$$

$$\bar{\mathbf{x}} = (x, y, 1)$$

- Degree of freedom (DOF)
 - The maximum number of logically independent values
 - 2D Rotation?
 - 2D Euclidean transformation?

2D Similarity Transformation

Scaled 2D rotation + 2D translation

$$\mathbf{x'} = s\mathbf{R}\mathbf{x} + \mathbf{t}$$
 $\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

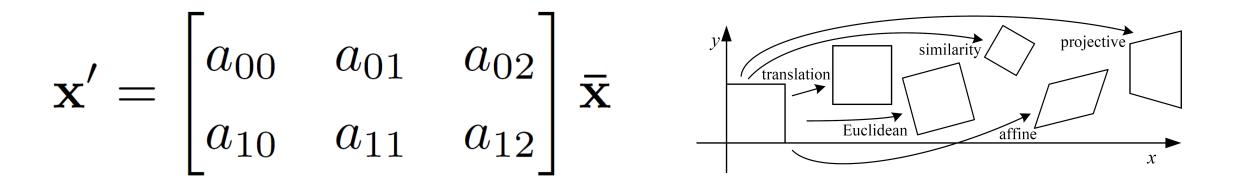
$$\mathbf{x}' = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{\bar{x}} = \begin{bmatrix} a & -b & t_x \\ b & a & t_y \end{bmatrix} \mathbf{\bar{x}} \qquad \mathbf{\bar{x}} = (x, y, 1)$$

The similarity transform preserves angles between lines.

2D Affine Transformation

• Arbitrary 2x3 matrix

$$\mathbf{x'} = \mathbf{A}\mathbf{\bar{x}}$$
 $\mathbf{\bar{x}} = (x, y, 1)$



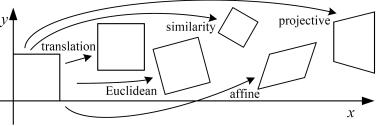
Parallel lines remain parallel under affine transformations.

2D Projective Transformation

• Also called perspective transform or homography

$$\mathbf{\tilde{x}}' = \mathbf{\tilde{H}}\mathbf{\tilde{x}} \qquad \text{homogeneous coordinates} \\ 3 \times 3 \quad \mathbf{\tilde{H}} \qquad \text{is only defined up to a scale} \\ x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}} \qquad \text{and} \qquad y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}$$

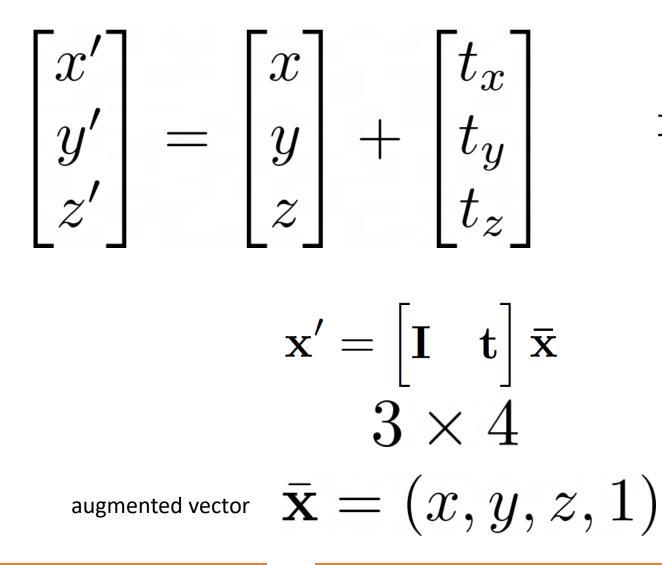
Perspective transformations preserve straight lines



Hierarchy of 2D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 imes 3}$	3	lengths	\bigcirc
similarity	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	4	angles	\bigcirc
affine	$ig[\mathbf{A}ig]_{2 imes 3}$	6	parallelism	
projective	$\left[{{{{f{f{H}}}}}} ight]_{3 imes 3}$	8	straight lines	

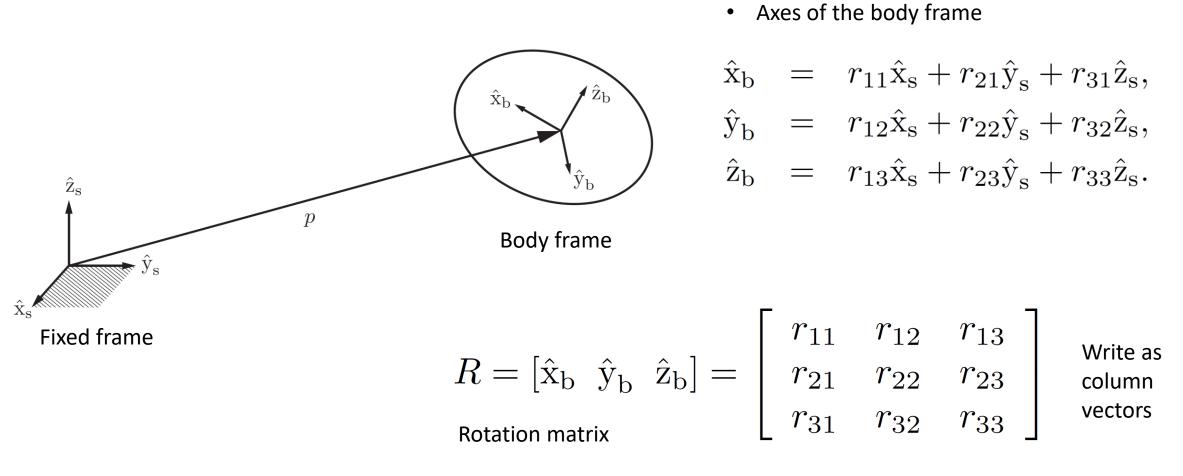
3D Translation



$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$

2/20/2025

3D Rotation



•

We will focus on 3D rotations in next lectures.

Yu Xiang

3D Euclidean Transformation SE(3)

• 3D Rotation + 3D translation

$$\mathbf{x}' = \mathbf{R}\mathbf{x} + \mathbf{t}$$
$$\mathbf{x}' = \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{\bar{x}}$$
$$3 \times 4$$
$$\bar{\mathbf{x}} = (x, y, z, 1)$$

orthonormal rotation matrix

$$\mathbf{R}\mathbf{R}^T = \mathbf{I} \text{ and } |\mathbf{R}| = 1$$

$$3 \times 3$$

3D Similarity Transformation

• Scaled 3D rotation + 3D translation

$$\mathbf{x}' = s\mathbf{R}\mathbf{x} + \mathbf{t}$$

$$\mathbf{x}' = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix} \bar{\mathbf{x}} \qquad \bar{\mathbf{x}} = (x, y, z, 1)$$
$$3 \times 4$$

This transformation preserves angles between lines and planes.

2/20/2025

3D Affine Transformation

$$\mathbf{x'} = \mathbf{A}\mathbf{\bar{x}}$$
 $\bar{\mathbf{x}} = (x, y, z, 1)$

$$\mathbf{x}' = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \end{bmatrix} \mathbf{\bar{x}}$$
$$\frac{3 \times 4}{2}$$

Parallel lines and planes remain parallel under affine transformations.

3D Projective Transformation

Also called 3D perspective transform or homography

$${f ilde x}'={f ilde H}{f ilde x}$$
 homogeneous coordinates $4 imes 4 imes {f ilde H}$ is only defined up to a scale

• Perspective transformations preserve straight lines

3D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	6	lengths	\bigcirc
similarity	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	7	angles	\bigcirc
affine	$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{3 imes 4}$	12	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{4 imes 4}$	15	straight lines	

Further Reading

- Section 2.1, Computer Vision, Richard Szeliski
- Chapter 2 and 3, Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman