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Feature Detection and Matching
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Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV’15

Applications: stereo matching, image stitching, 3D reconstruction, 
camera pose estimation, object recognition



Feature Detectors

• How to find image locations that can be reliably matched with 
images?
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Feature Detectors
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Corner Edge Textureless region



Invariance

• Can the same feature point be detected after some transformation?
• Translation invariance

• 2D rotation invariance

• Scale invariance
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No

Are Harris corners scale invariance?

Are Harris corners translation invariance?

Are Harris corners rotation invariance?



Scale Invariance

• Solution 1: detection features in all scales, matching features in 
corresponding scale (for small scale change)

2/15/2024 Yu Xiang 6

Image pyramid Multi-scale oriented patches (MOPS) extracted at five pyramid 
levels (Brown, Szeliski, and Winder 2005)



Scale Invariance

• Solution 2: detect features that are stable in both location and scale
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Intuition: Find local 
maxima in both 
position and scale

What filter can we use 
for scale selection?

Consider Harris corner detector



Scale Invariance Feature Transform (SIFT)

• Keypoint detection

• Compute descriptors

• Matching descriptors
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David Lowe, Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 2004



Laplacian of Gaussian for Scale Selection
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Highest response when the signal has the
same characteristic scale as the filter



Laplacian of Gaussian for Scale Selection
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Search over different scales



Laplacian of Gaussian for Scale Selection
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Multi-scale
2D Blob detection



Laplacian of Gaussian for Scale Selection
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Cascaded Gaussians

• Repeated convolution by a smaller Gaussian to simulate effects of a 
larger one

• Explanation sketch: convolution in spatial domain is multiplication in 
frequency domain (Fourier space). Fourier transform of Gaussian is
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Approximating LoG with DoG

• LoG can be approximate by a Difference of two Gaussians (DoG) at 
different scales
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SIFT: Scale-space Extrema Detection

• Difference of Gaussian (DoG)
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Approximate of Laplacian of Gaussian
(efficient to compute) k is a constant



SIFT: Scale-space Extrema Detection
• Gaussian pyramid
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• Gaussian  filters

• Sub-sampling by a factor of 2
• Multiple the Gaussian kernel deviation by 2

Sub-sampling



SIFT: Scale-space Extrema Detection
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Maxima and minima of DoG images



Further Reading

• Section 7.1, Computer Vision, Richard Szeliski

• David Lowe, Distinctive Image Features from Scale-Invariant 
Keypoints. IJCV, 2004 https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

• ORB: An efficient alternative to SIFT or SURF. Rublee et al., ICCV, 2011
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https://www.cs.ubc.ca/%7Elowe/papers/ijcv04.pdf
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