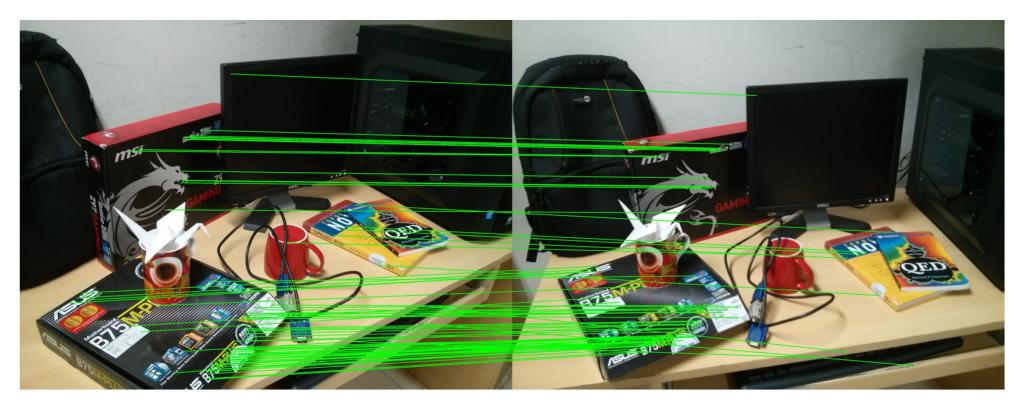


CS 4391 Introduction Computer Vision Professor Yu Xiang The University of Texas at Dallas

Feature Detection and Matching

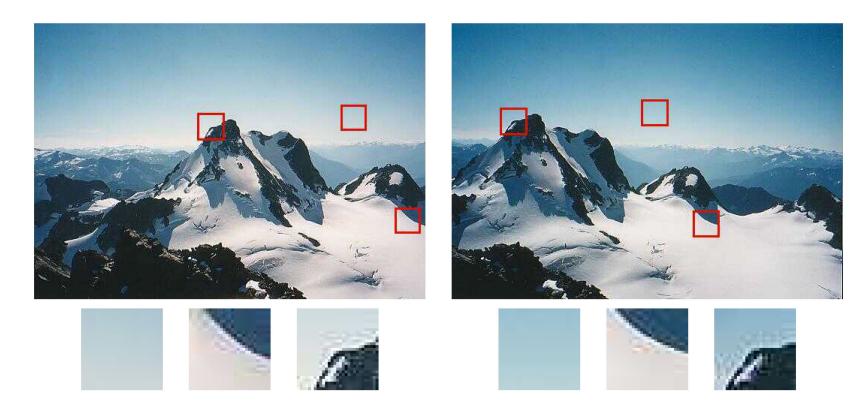


Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV'15

Applications: stereo matching, image stitching, 3D reconstruction, camera pose estimation, object recognition

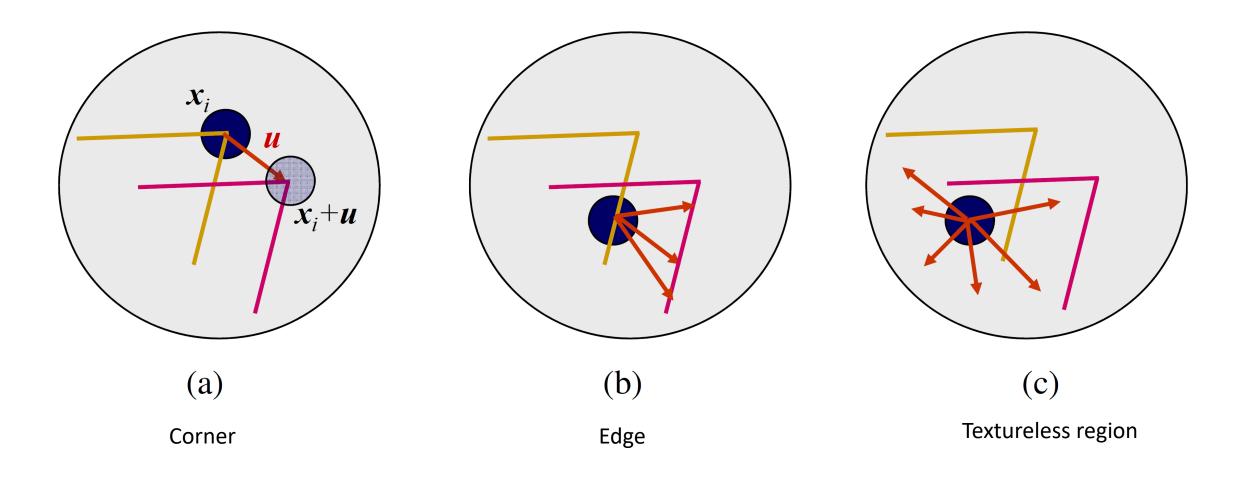
Feature Detectors

 How to find image locations that can be reliably matched with images?



Yu Xiang

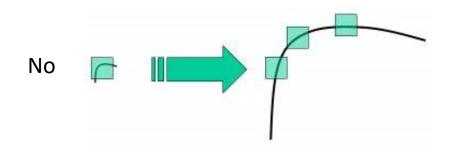
Feature Detectors

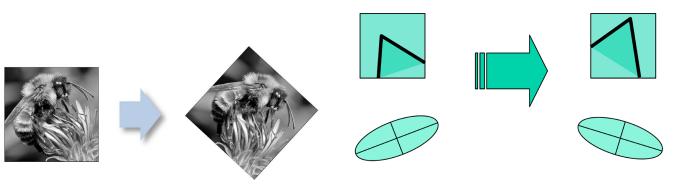


Invariance

- Can the same feature point be detected after some transformation?
 - Translation invariance Are Harris corners translation invariance?
 - 2D rotation invariance Are Harris corners rotation invariance?
 - Scale invariance

Are Harris corners scale invariance?





Scale Invariance

• Solution 1: detection features in all scales, matching features in corresponding scale (for small scale change)

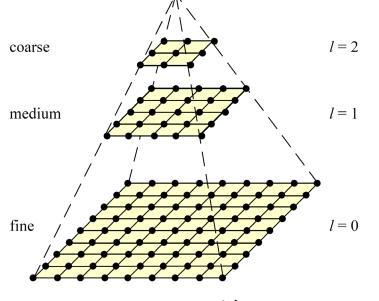
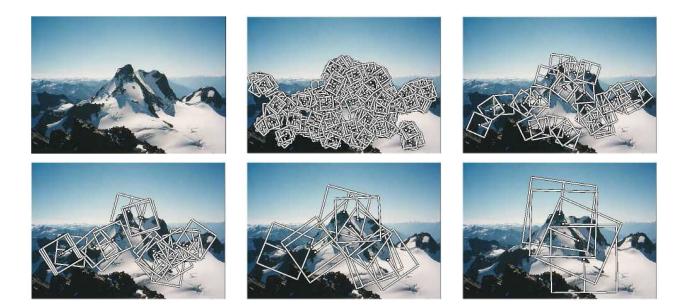


Image pyramid



Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown, Szeliski, and Winder 2005)

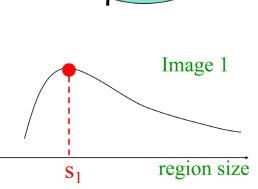
Scale Invariance

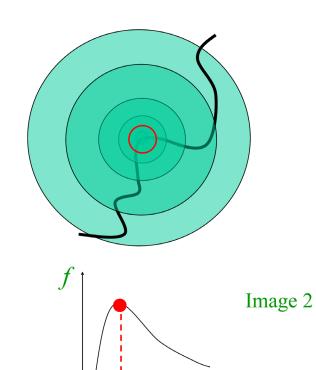
• Solution 2: detect features that are stable in both location and scale

Consider Harris corner detector

Intuition: Find local maxima in both position and scale

What filter can we use for scale selection?



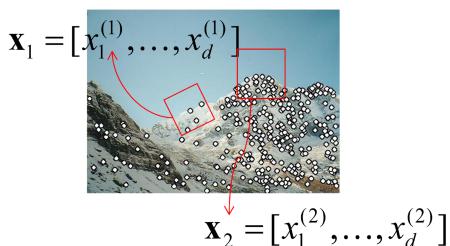


 \mathbf{S}_2

region size

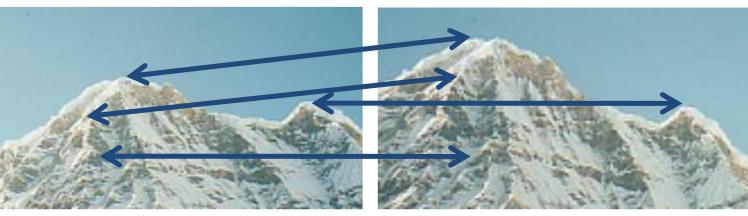
Scale Invariance Feature Transform (SIFT)

• Keypoint detection



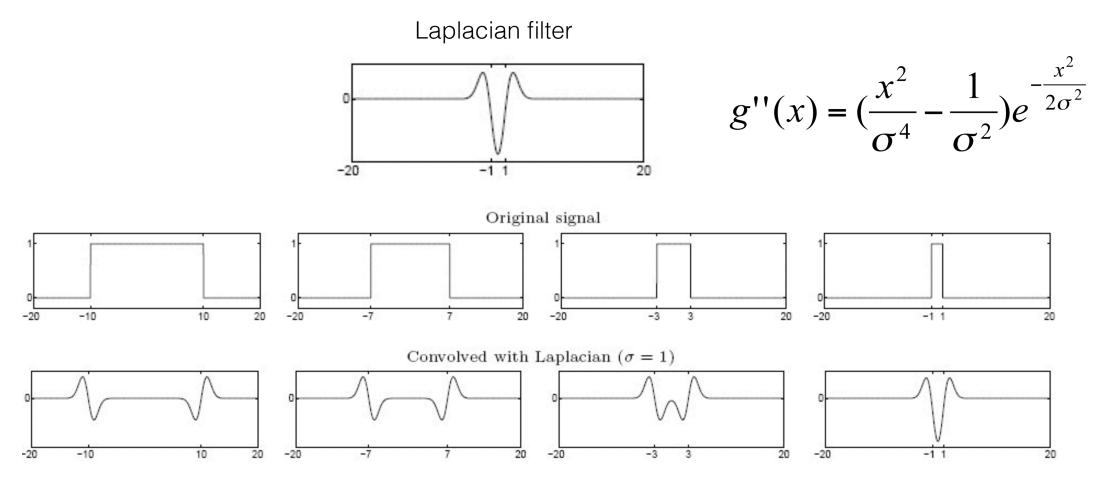
• Compute descriptors

• Matching descriptors

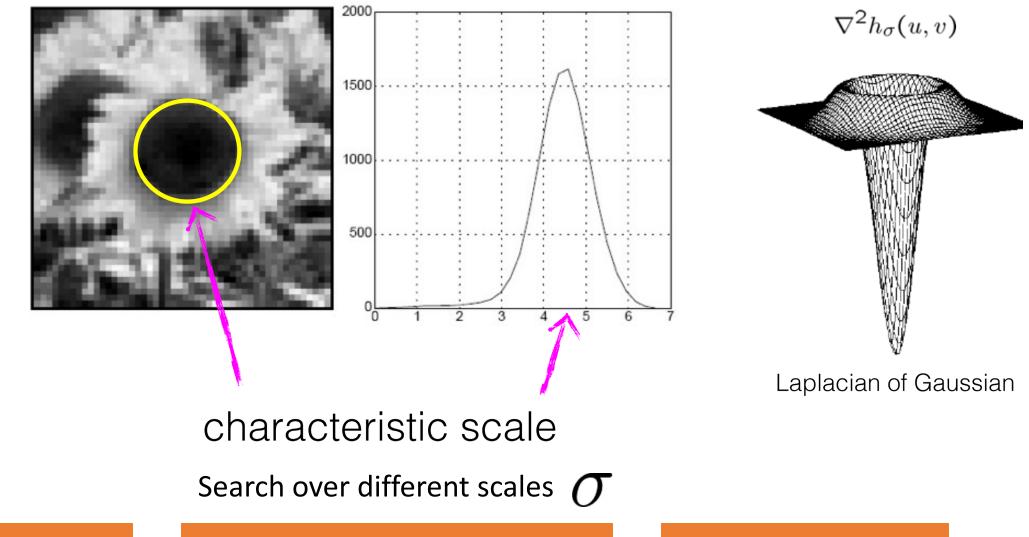


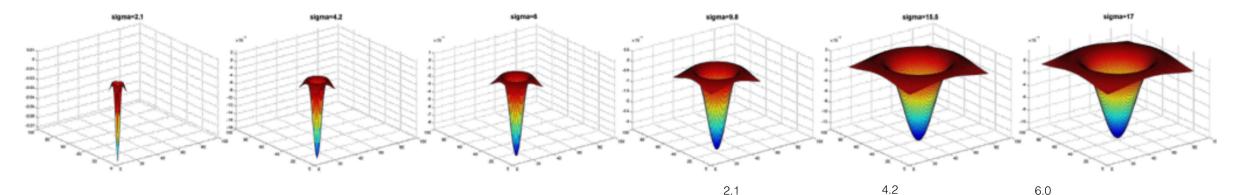
David Lowe, Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 2004

2/15/2024

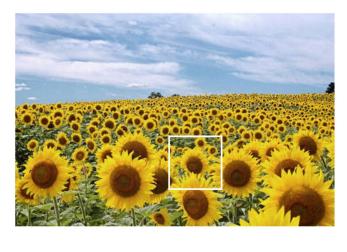


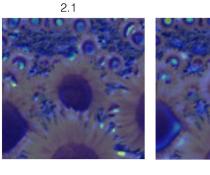
Highest response when the signal has the same **characteristic scale** as the filter

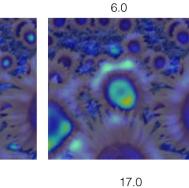


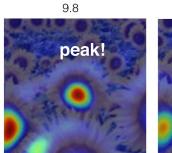


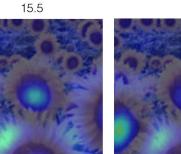
Multi-scale 2D Blob detection



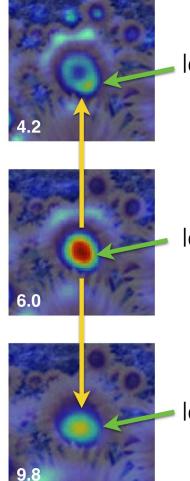








Yu Xiang



local maximum

cross-scale maximum

local maximum

local maximum

Cascaded Gaussians

 Repeated convolution by a smaller Gaussian to simulate effects of a larger one

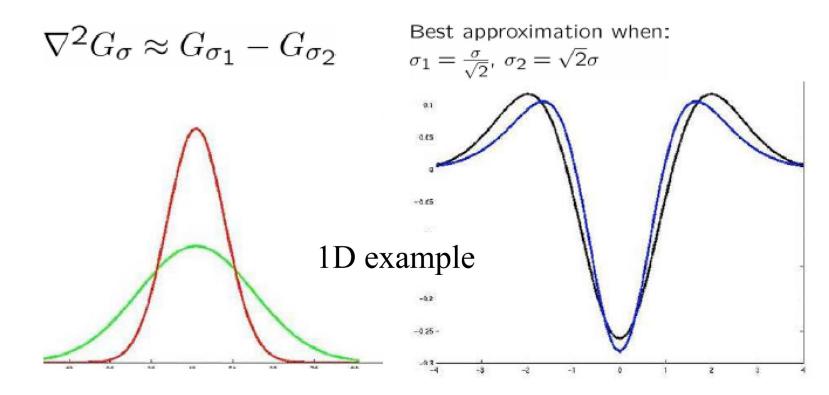
$$G^*(G^*f) = (G^*G)^*f \quad [associative]$$
$$G_{\sigma_1}^* G_{\sigma_2} = G_{\sigma} \quad \sigma^2 = \sigma_1^2 + \sigma_2^2$$

• Explanation sketch: convolution in spatial domain is multiplication in frequency domain (Fourier space). Fourier transform of Gaussian is

$$\mathcal{F}_{x}\left[e^{-\frac{x^{2}}{2\sigma^{2}}}\right] = e^{-2\pi^{2}\sigma^{2}u^{2}}$$
$$e^{-2\pi^{2}\sigma_{1}^{2}u^{2}}e^{-2\pi^{2}\sigma_{2}^{2}u^{2}} = e^{-2\pi^{2}(\sigma_{1}^{2}+\sigma_{2}^{2})u^{2}}$$

Approximating LoG with DoG

 LoG can be approximate by a Difference of two Gaussians (DoG) at different scales



SIFT: Scale-space Extrema Detection

• Difference of Gaussian (DoG)

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2 + y^2)/2\sigma^2}$$

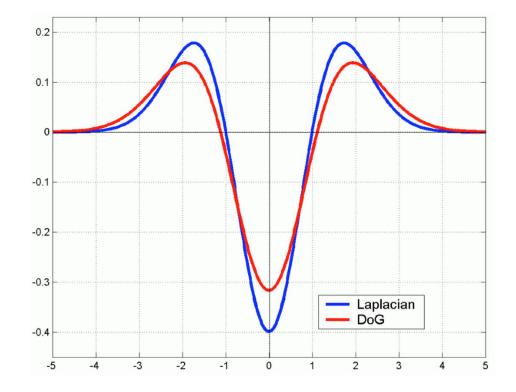
$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$

$$D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y)$$

= $L(x, y, k\sigma) - L(x, y, \sigma).$

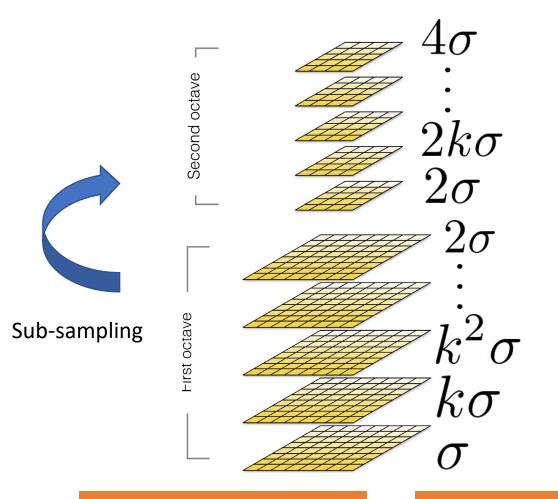
Approximate of Laplacian of Gaussian (efficient to compute)

k is a constant



SIFT: Scale-space Extrema Detection

• Gaussian pyramid



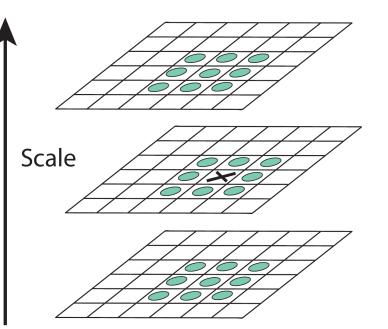
• Gaussian filters

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$
$$G_{\sigma_1} * G_{\sigma_2} = G_{\sigma} \quad \sigma^2 = \sigma_1^2 + \sigma_2^2$$

- Sub-sampling by a factor of 2
 - Multiple the Gaussian kernel deviation by 2

SIFT: Scale-space Extrema Detection

Scale (next octave) Scale (first octave) Difference of Gaussian (DOG) Gaussian



Maxima and minima of DoG images

$$\begin{split} L(x,y,\sigma) &= G(x,y,\sigma) * I(x,y) \\ G(x,y,\sigma) &= \frac{1}{2\pi\sigma^2} e^{-(x^2+y^2)/2\sigma^2} \end{split} \quad D(x,y,\sigma) = (G(x,y,k\sigma) - G(x,y,\sigma)) * I(x,y) \\ &= L(x,y,k\sigma) - L(x,y,\sigma). \end{split}$$

2/15/2024

. . .

Further Reading

- Section 7.1, Computer Vision, Richard Szeliski
- David Lowe, Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 2004 <u>https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf</u>
- ORB: An efficient alternative to SIFT or SURF. Rublee et al., ICCV, 2011