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Recall: First Derivative Filters

* Sharp changes in gray level of the input correspond to “peaks or
valleys” of the first-derivative of the input signal
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Recall: First Derivative Filters
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Second Derivative Filters

* Peaks or valleys of the first-derivative of the input signal, correspond
to “zero-crossings” of the second-derivative of the input signal
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Second Derivative Filters

* Taylor series expansion
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Example: Second Derivatives
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Edge Detection with Second Derivative Filters

* Find zero-crossings in second derivate

* In 1D, convolve with [1 -2 1] and look for pixels where response is
(nearly) zero?

* In 1D, convolve with [1 -2 1] and look for pixels where response is
nearly zero AND magnitude of first derivative is “large enough”.




Laplace Filter
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Laplace Filter
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More about Laplacian

« V?2(x,y)isa SCALAR

— 1 Can be found using a SINGLE mask

— | Orientation information 1s lost

« V?2I(x,y) is the sum of SECOND-order derivatives
— But taking derivatives increases noise

— Very noise sensitive!
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Laplacian of Gaussian (LoG) Filter

* First smooth with a Gaussian filter
* Then apply the Laplacian filter

O(x,y) = V(I(x,y) * G(x,y))

V(f(x,1)®G(x,1))=V’G(x,y)® f(x, 1)
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1D Gaussian and Derivatives
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Second Derivate of Gaussian
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Laplacian of Gaussian Filter
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Laplacian of Gaussian Filter

Sigma = 50
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Edge Detection with LoG
1D

step edge

IVI(x.y)l =(T2(x.y) + I,A(x,y))2> Th
tan 6 = I (x,y)/ I (x.y)
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/Zero-Crossing as an Edge Detector

Raw zero-crossings (no contrast thresholding)




/Zero-Crossing as an Edge Detector

Raw zero-crossings (no contrast thresholding)

LoG sigma = 4, zero-crossing




/ero- Crossmg as an Edge Detector

LoG sigma = 8, zero-crossing




Lindeberg: "~ Feature detection with automatic
scale selection". International Journal of
Computer Vision, vol 30, number 2, pp. 77--
116, 1998.




Example: LoG Extrema

LoG
sigma = 2

maxima
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maxima

LoG Blob Detection

* LoG filter extrema locates “blobs”
* Maxima: dark blobs on light background
* Minima: light blobs on dark background

minima

* Scale of blob (size ; radius in pixels) is determined by the sigma
parameter of the LoG filter

; LoG sigma =2 LoG sigma =10




. Convolution (and cross correlation) with a filter can be
I_O G B ‘ O b D ete Ct I O n viewed as comparing a little “picture” of what you want

to find against all local regions in the mage.
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LoG Blob Detection

Lindeberg: blobs are detected as local extrema in space and
scale, within the LoG scale-space volume.




Further Reading

* Tony Lindeberg, Feature Detection with Automatic Scale Selection,
https://people.kth.se/~tony/papers/cvap198.pdf



https://people.kth.se/~tony/papers/cvap198.pdf
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