

Smoothing

CS 4391 Introduction Computer Vision Professor Yu Xiang The University of Texas at Dallas

Recall Image Gradient

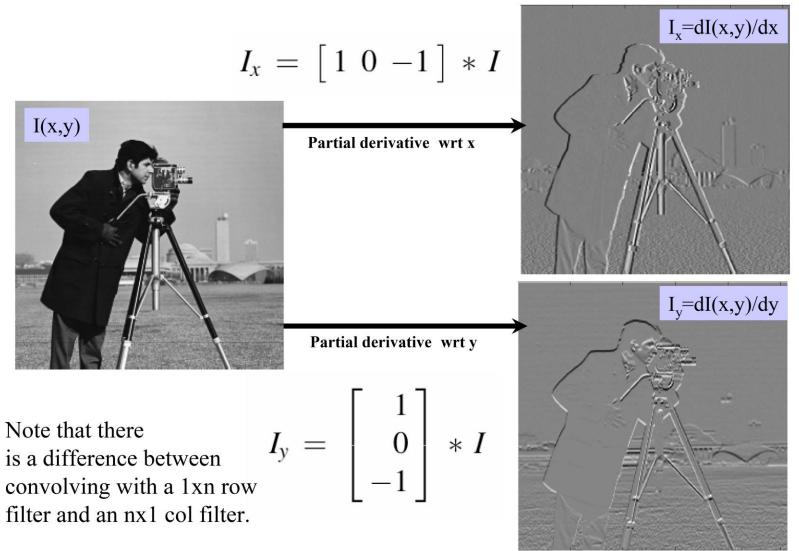
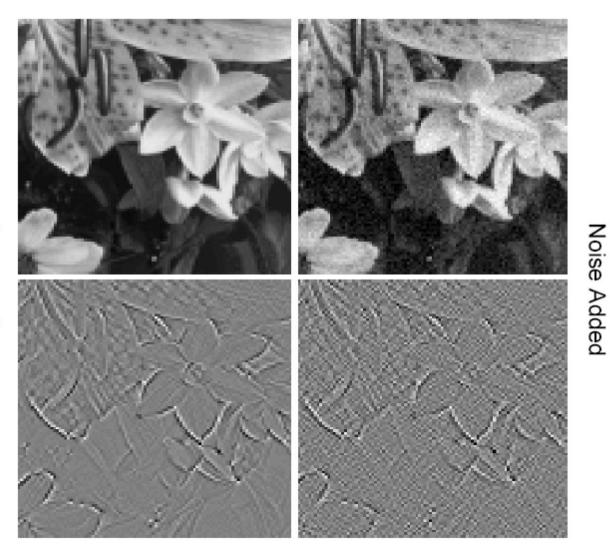


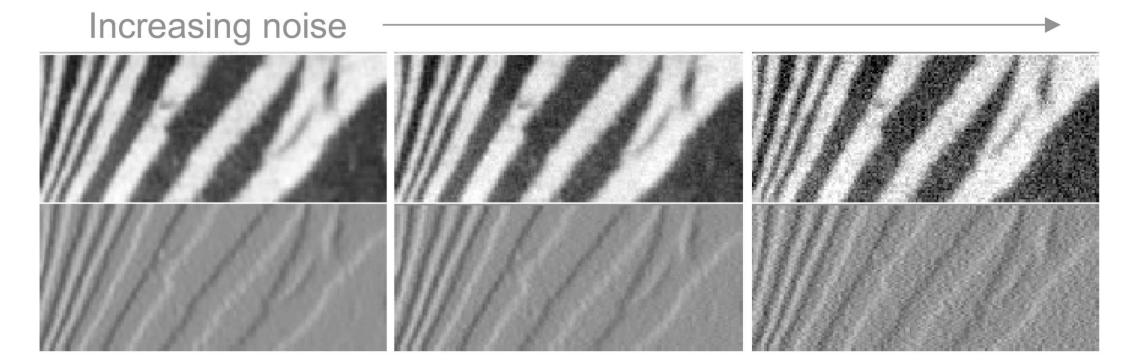
Image Gradient and Noise



Original Image

Image Gradient and Noise

• First derivative operator is affected by noise



Numerical derivatives can amplify noise

Image Noise

- Fact: images are noises
- Examples:
 - Light fluctuations
 - Sensor noise
 - Quantization effect
 - Finite precision

Modeling Image Noise

Additive random noise

$$I(x,y) = s(x,y) + n_i$$

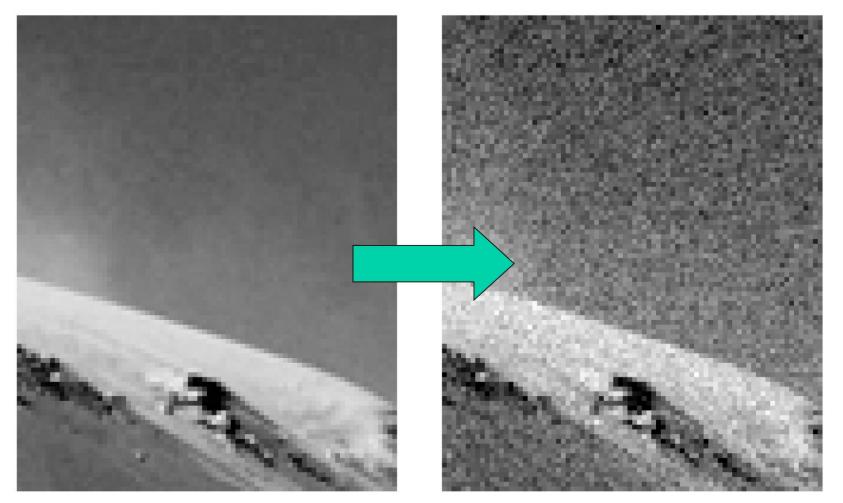
- n_i is i.i.d (independent and identically distributed)
- Zero-mean gaussian noise $\mathcal{N}(0,\sigma^2)$

Gaussian distribution (normal distribution)

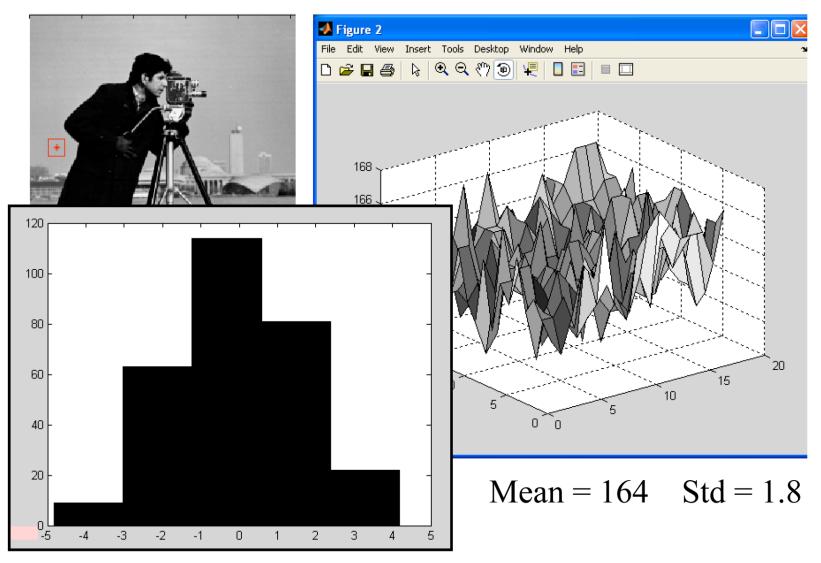
$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Modeling Image Noise

mean 0, sigma = 16

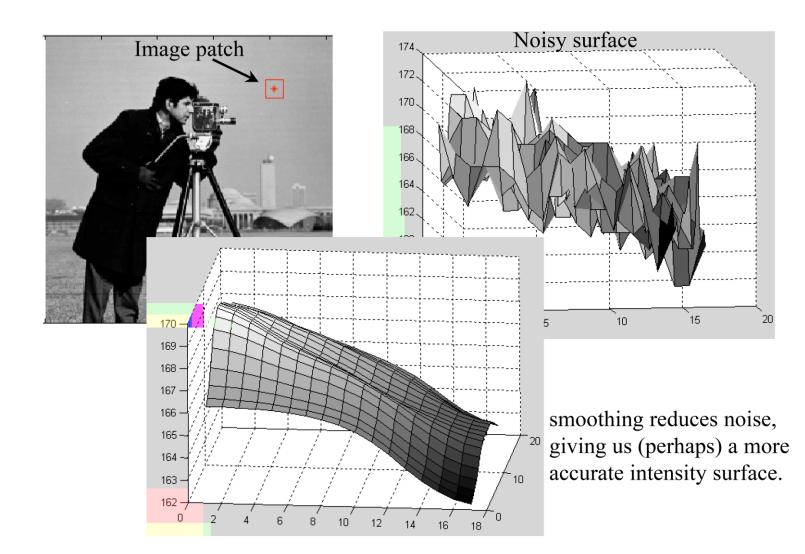


Empirical Evidence



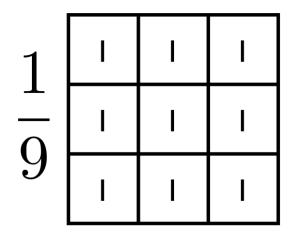
Smoothing

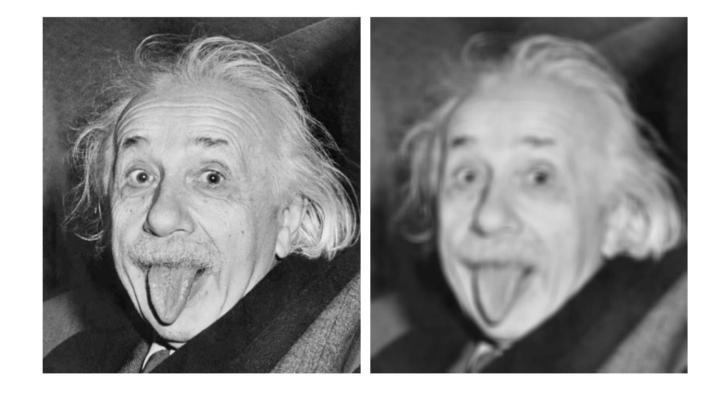
• Reduce noise



Box Filter

• Replace a pixel with a local average (smoothing)





Why Average Reduces Noise

• Intuitive explanation: variance of noise in the average is smaller than variance of the pixel noise (assuming zero-mean Gaussian noise).

$$A = \frac{1}{m^2} \sum_{i=1}^{m^2} I_m$$

$$I_m = s_m + n_m \text{ with n being i.i.d. } G(0, \sigma^2)$$

$$E(A) = \frac{1}{m^2} \sum s_m$$

$$var(A) = E\left[(A - E(A))^2\right] = \frac{\sigma^2}{m}$$

Smoothing with Box Filter

original

Convolved with 11x11 box filter

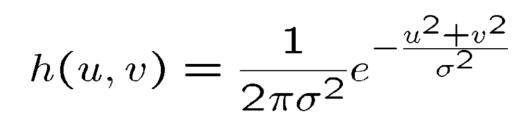
Drawback: smoothing reduces fine image detail

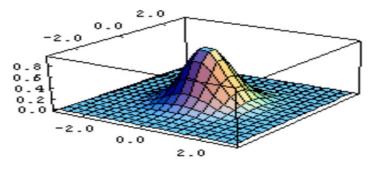
Needs to balance smoothing and keep image gradient

Gaussian Filter

• A case of weighted averaging

• The weights are from a 2D Gaussian distribution

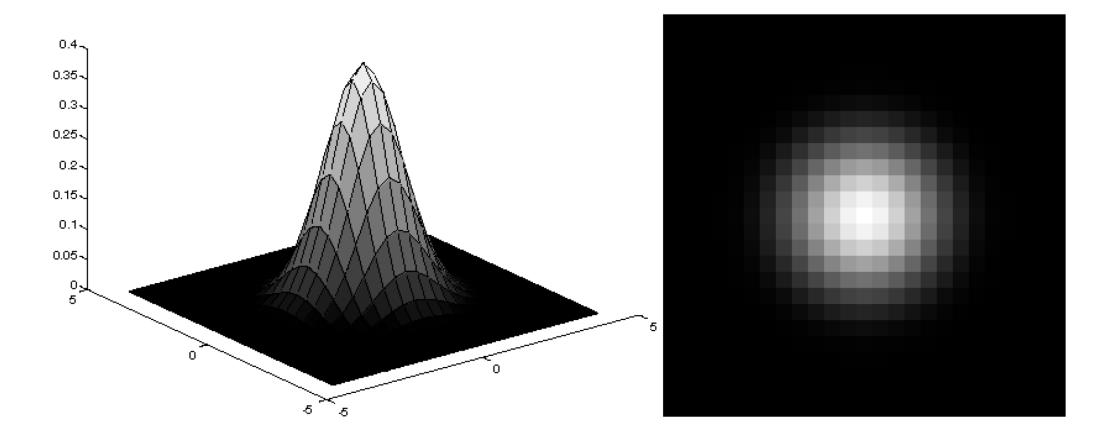




- Gives more weight at the central pixels and less weights to the neighbors
- The farther away the neighbors, the smaller the weight

Gaussian Filter

• An isotropic (circularly symmetric) Gaussian



Gaussian Smoothing Example

original

sigma = 3

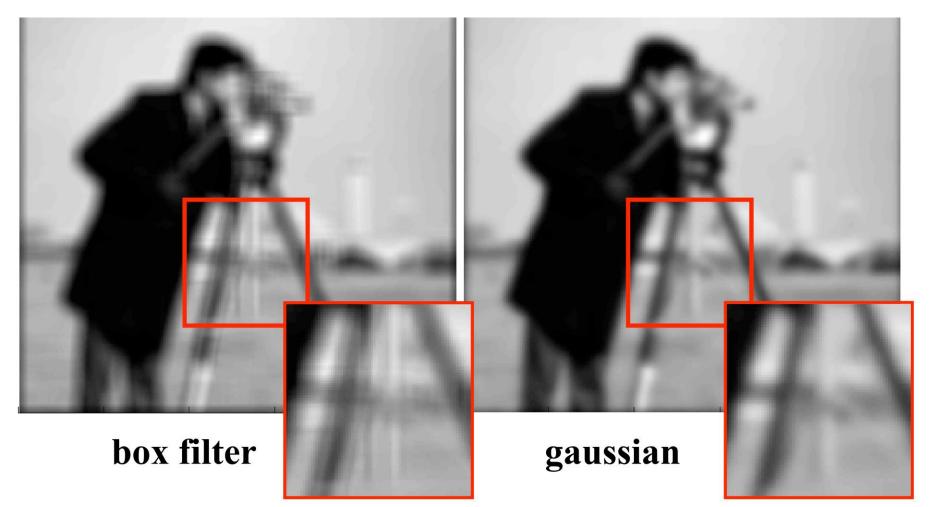
1/29/2024

Box vs. Gaussian

box filter

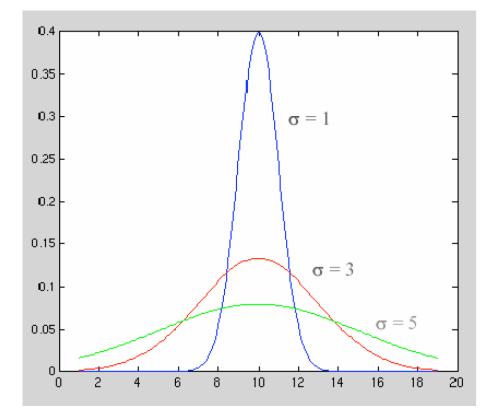
1/	29,	/2024

Box vs. Gaussian



Note: Gaussian is a true low-pass filter, so won't cause high frequency artifacts

- The std. dev of the Gaussian determines the amount of smoothing
- Gaussian theoretically has infinite support, but we need a filter of finite size.
- For a 98.76% of the area, we need +/-2.5 σ
- +/- 3σ covers over 99% of the area.



Standard deviation $\,\sigma\,$

- Pixels at a distance of more than 3σ are small
- Typical filter dimension $\lceil 6\sigma \rceil \times \lceil 6\sigma \rceil$
- Large $\,\sigma$, large filter size

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

original

original

sigma = 3

original

sigma = 10

1/29/2024

Further Reading

- Chapter 3.2, 3.3, Richard Szeliski
- Multivariate normal distribution <u>https://en.wikipedia.org/wiki/Multivariate_normal_distribution</u>
- OpenCV image smoothing <u>https://opencv24-python-</u> <u>tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filteri</u> <u>ng/py_filtering.html</u>