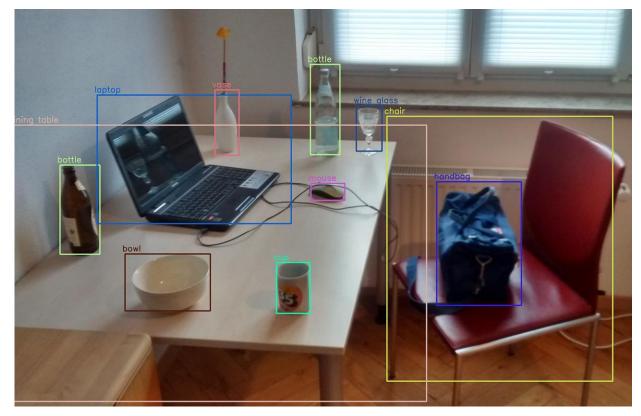


CS 4391 Introduction Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Yu Xiang

Object Detection

Localize objects in images and classify them



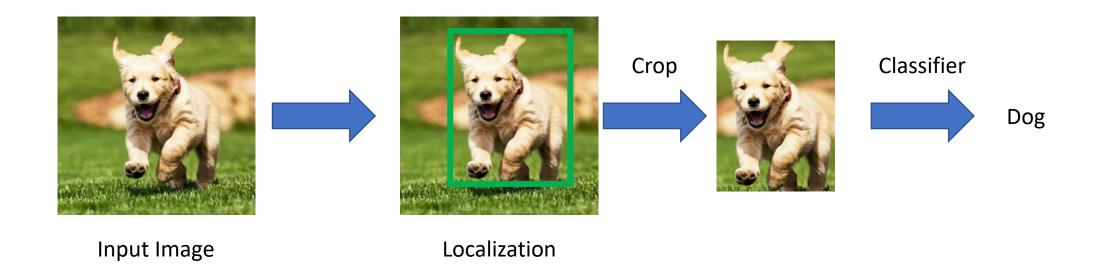
Wikipedia

Why using bounding boxes?

- Easy to store
 - (x, y, w, h): box center with width, height
 - (x1, y1, x2, y2): top left corner and bottom right corner
- Easy for image processing
 - Crop a region

Object Detection

• Localization + Classification

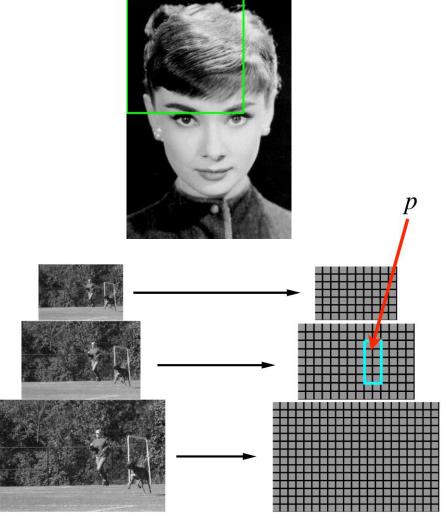


Localization: Sliding Window

Select a window with a fixed size

 Scan the input image with the window (bounding box)

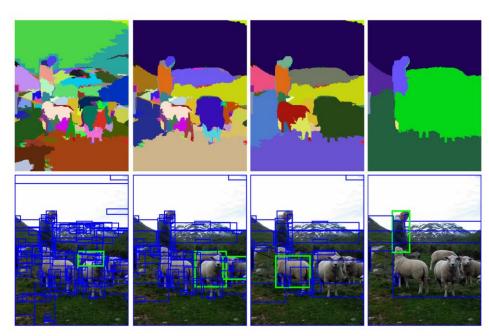
- How to deal with different object scales and aspect ratios?
 - Use boxes with different aspect ratios
 - Image pyramid



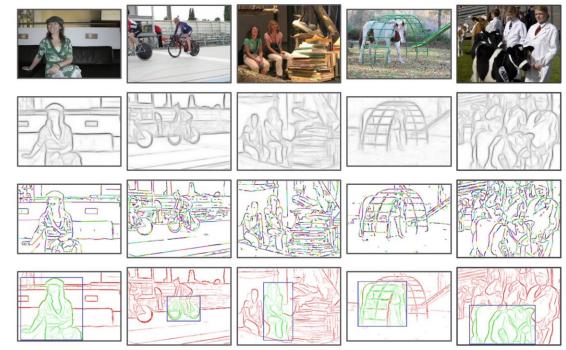
https://cvexplained.wordpress.com/tag/sliding-windows/

Localization: Region Proposal

- Leverage methods that can generate regions with high likelihood of containing objects
 - E.g., bottom-up segmentation methods, using edges



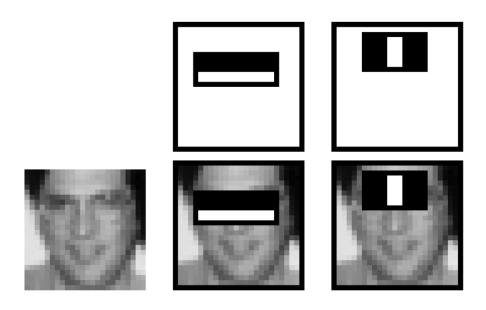
Selective Search, Sande et al., ICCV'11



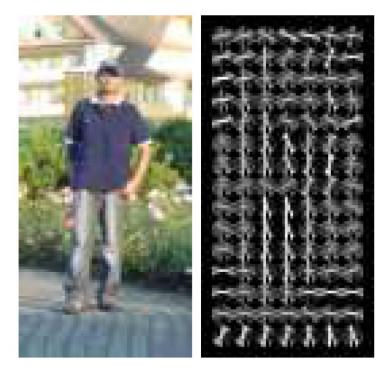
Edge Boxes. Zitnick & Dollar, ECCV'14

Classification: Features

- Traditional methods: Hand-crafted features
- Deep learning methods: learned features in the network



Viola and Jones: rectangle features

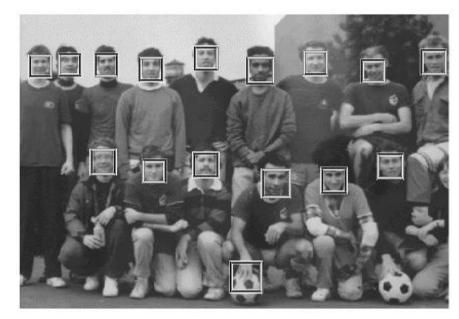


Dadal & Triggs: Histograms of Oriented Gradients

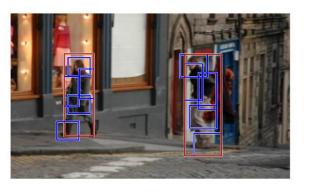
Classification: Classifiers

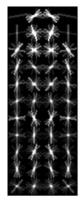
- Traditional methods
 - AdaBoost
 - Support vector machines (SVMs)

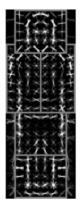
- Deep learning methods
 - Neural networks

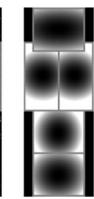


Viola and Jones: AdaBoost Robust Real-time Object Detection. IJCV, 2001.







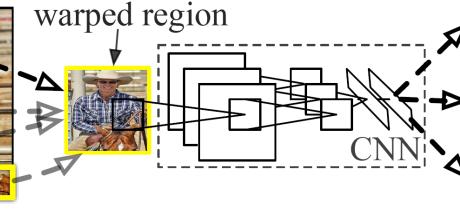


Felzenszwalb et al: SVM

Object detection with discriminatively trained part-based models . TPAMI, 2009.

R-CNN

1. Input image



2. Extract region proposals (~2k)

3. Compute CNN features 4. Classify regions **SVM**

tvmonitor? no.

aeroplane? no.

person? yes.

Selective Search

Rich feature hierarchies for accurate object detection and semantic segmentation. Girshick et al., CVPR, 2014

4/23/2024

R-CNN

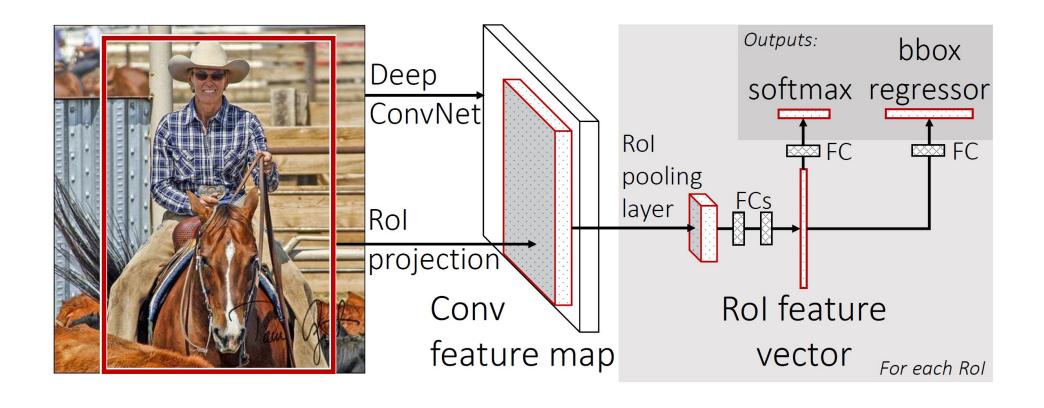
VOC 2007 test	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
R-CNN pool ₅	51.8	60.2	36.4	27.8	23.2	52.8	60.6	49.2	18.3	47.8	44.3	40.8	56.6	58.7	42.4	23.4	46.1	36.7	51.3	55.7	44.2
R-CNN fc ₆	59.3	61.8	43.1	34.0	25.1	53.1	60.6	52.8	21.7	47.8	42.7	47.8	52.5	58.5	44.6	25.6	48.3	34.0	53.1	58.0	46.2
R-CNN fc ₇	57.6	57.9	38.5	31.8	23.7	51.2	58.9	51.4	20.0	50.5	40.9	46.0	51.6	55.9	43.3	23.3	48.1	35.3	51.0	57.4	44.7
R-CNN FT pool ₅	58.2	63.3	37.9	27.6	26.1	54.1	66.9	51.4	26.7	55.5	43.4	43.1	57.7	59.0	45.8	28.1	50.8	40.6	53.1	56.4	47.3
R-CNN FT fc ₆	63.5	66.0	47.9	37.7	29.9	62.5	70.2	60.2	32.0	57.9	47.0	53.5	60.1	64.2	52.2	31.3	55.0	50.0	57.7	63.0	53.1
R-CNN FT fc7	64.2	69.7	50.0	41.9	32.0	62.6	71.0	60.7	32.7	58.5	46.5	56.1	60.6	66.8	54.2	31.5	52.8	48.9	57.9	64.7	54.2
R-CNN FT fc ₇ BB	68.1	72.8	56.8	43.0	36.8	66.3	74.2	67.6	34.4	63.5	54.5	61.2	69.1	68.6	58.7	33.4	62.9	51.1	62.5	64.8	58.5
DPM v5 [20]	33.2	60.3	10.2	16.1	27.3	54.3	58.2	23.0	20.0	24.1	26.7	12.7	58.1	48.2	43.2	12.0	21.1	36.1	46.0	43.5	33.7
DPM ST [28]	23.8	58.2	10.5	8.5	27.1	50.4	52.0	7.3	19.2	22.8	18.1	8.0	55.9	44.8	32.4	13.3	15.9	22.8	46.2	44.9	29.1
DPM HSC [31]	32.2	58.3	11.5	16.3	30.6	49.9	54.8	23.5	21.5	27.7	34.0	13.7	58.1	51.6	39.9	12.4	23.5	34.4	47.4	45.2	34.3

BB: bounding box regression

Features from AlexNet

Rich feature hierarchies for accurate object detection and semantic segmentation. Girshick et al., CVPR, 2014

Fast R-CNN

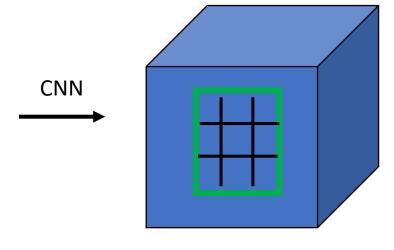


Fast R-CNN. Girshick, ICCV, 2015

Rol Pooling

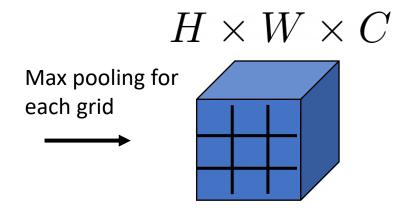
Divide the mapping RoI into H x W grids

(x,y,h,w)



Rol mapping to feature map

$$s \times (x, y, h, w)$$
$$s = \frac{1}{16}$$



$$7 \times 7$$
 Rol pooling in Fast R-CNN

Bounding Box Regression

Predict bounding box regression offset for K object classes

$$t^k = \begin{pmatrix} t_{\rm X}^k, t_{\rm Y}^k, t_{\rm W}^k, t_{\rm h}^k \end{pmatrix} \quad G = (G_x, G_y, G_w, G_h) \quad P = (P_x, P_y, P_w, P_h)$$
 Offset G: ground truth P: input Rol

$$t_x = (G_x - P_x)/P_w$$
 $\hat{G}_x = P_w d_x(P) + P_x$
 $t_y = (G_y - P_y)/P_h$ $\hat{G}_y = P_h d_y(P) + P_y$
 $t_w = \log(G_w/P_w)$ $\hat{G}_w = P_w \exp(d_w(P))$
 $t_h = \log(G_h/P_h).$ $\hat{G}_h = P_h \exp(d_h(P)).$

G: ground truth, P: input Rol

Fast R-CNN

Bounding box regress target

Loss function

$$L(p,u,t^u,v) = L_{\mathrm{cls}}(p,u) + \lambda[u \geq 1]L_{\mathrm{loc}}(t^u,v)$$
 ax classification probabilities

True class label

Softmax classification probabilities

$$p = (p_0, \dots, p_K)$$

$$t^u = (t_{\mathrm{x}}^u, t_{\mathrm{y}}^u, t_{\mathrm{w}}^u, t_{\mathrm{h}}^u)$$

$$L_{\text{loc}}(t^u,v) = \sum_{i \in \{\mathbf{x},\mathbf{y},\mathbf{w},\mathbf{h}\}} \operatorname{smooth}_{L_1}(t^u_i - v_i) \qquad \operatorname{smooth}_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1 \\ |x| - 0.5 & \text{otherwise} \end{cases}$$

4/23/2024 Yu Xiang 13

Fast R-CNN

	Fa	st R-CN	N	F	SPPnet		
	S	\mathbf{M}	\mathbf{L}	S	\mathbf{M}	${f L}$	$^{\dagger}\mathbf{L}$
train time (h)	1.2	2.0	9.5	22	28	84	25
train speedup	18.3×	14.0×	$8.8 \times$	$1 \times$	$1\times$	$1\times$	3.4×
test rate (s/im)	0.10	0.15	0.32	9.8	12.1	47.0	2.3
⊳ with SVD	0.06	0.08	0.22	-	-	-	_
test speedup	98×	$80 \times$	146×	1×	$1 \times$	$1\times$	20×
⊳ with SVD	169×	150×	213 ×	-	-	-	-
VOC07 mAP	57.1	59.2	66.9	58.5	60.2	66.0	63.1
⇒ with SVD	56.5	58.7	66.6	_	-	-	_

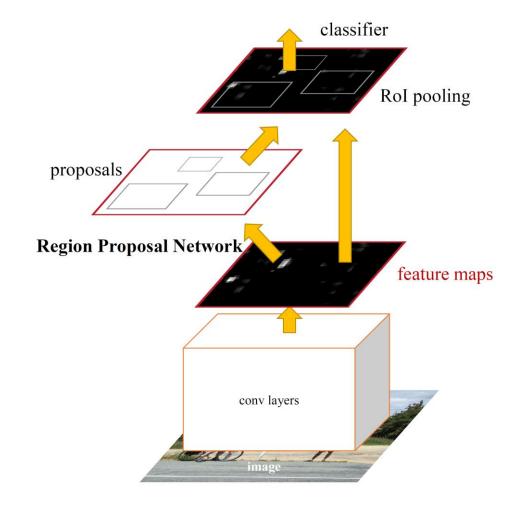
S: AlexNet, M: VGG, L: deep VGG SVD for FCs layers

$$W \approx U \Sigma_t V^T$$

Fast R-CNN. Girshick, ICCV, 2015

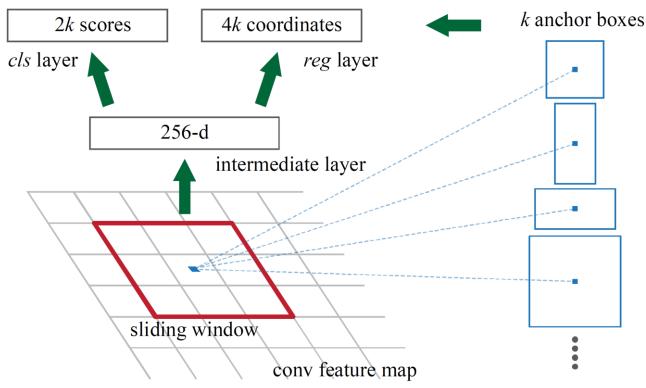
Faster R-CNN

- A single network for object detection
 - Region proposal network
 - Classification network



Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Ren et al., NeurIPS, 2015

Region Proposal Network



An anchor is centered at the sliding window in question, and is associated with a scale and aspect ratio (3 scales, 3 aspect ratios, k=9)

3x3 conv layer to 256-d

```
layer {
  name: "rpn_conv/3x3"
  type: "Convolution"
  bottom: "conv5"
  top: "rpn/output"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 256
    kernel_size: 3 pad: 1 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
}
```

classification

```
layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 18 # 2(bg/fg) * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
  h
  bias_filler { type: "constant" value: 0 }
}
```

Bounding box regression

```
layer {
  name: "rpn_bbox_pred"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_bbox_pred"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 36 # 4 * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
}
```

Two stage vs One stage

- Two stage detection methods
 - Stage 1: generate region proposals
 - Stage 2: classify region proposals and refine their locations
 - E.g., R-CNN, Fast R-CNN, Faster R-CNN
- One stage detection methods
 - An end-to-end network for object detection
 - E.g., YOLO

Summary

- Two-stage detectors
 - R-CNN, Fast R-CNN, Faster R-CNN
 - Region proposal + classification
 - Good performance, slow

Further Reading

- Viola—Jones object detection, 2001
 https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
- Deformable part model, 2010, https://ieeexplore.ieee.org/document/5255236
- R-CNN, 2014 https://arxiv.org/abs/1311.2524
- Fast R-CNN, 2015 https://arxiv.org/abs/1504.08083
- Faster R-CNN, 2015 https://arxiv.org/abs/1506.01497