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Single Images

* Convolutional neural networks

High-level information

* Depth
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Sequential Data

* Data depends on time
* Video

t+1

* Sentence

UT Dallas is a rising public research university in the heart of DFW.
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Sequential Data Labeling

* Video frame labeling

Standing Falling Falling Backflipping Backflipping Falling Sitting
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https://bleedai.com/human-activity-recognition-using-tensorflow-cnn-lstm/



https://bleedai.com/human-activity-recognition-using-tensorflow-cnn-lstm/

Sequential Data Labeling

* Part-of-speech tagging (grammatical tagging)

Tag Meaning
ADJ adjective
ADP adposition
ADV adverb

CONI  conjunction
DET determiner, article
HMOURM noun

She

sells

seashells

NUM numeral
PRT particle
on || the || seashore PRON  pronoun
VERE verh
R . punctuation marks
g X other

English Examples
new, good, high, special, big, local
on, of, at, with, by, inta, under
really, already, still, early, now
and, or, but, if, while, although
the, a, some, mast, every, no, which
vear, home, costs, time, Africa
twenty-four; fourth, 1907, 14:24
at, on, out, over per, that, up, with
he, their, her, its, my, I, us
is, say, told, given, playing, would
o]
ersatz, esprit, dunno, gr8, univeristy




Sequential Data Labeling
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Recurrent Neural Networks
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Hidden State Update

Updating function

] / with parameters W

*:) 5175 — fW(h;—hX{)

X Hidden state Hidden state Input at
at time t at time t-1 time t




Using the Hidden State

Y h; = fW(ht—laXt)
Yt — fW’(ht)




Recurrent Neural Networks
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Internal state
(memory)




Vanilla RNN

Hidden state updating rule

Y ht — tanh(Whhht_l —+ thXt)
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RNN Computation Graph
Y1 Y2 y3

The same set of weights for different time steps fW fW/




RNN Training




Backpropagation through Time
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What is the problem in this training paradigm?
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Truncated Backpropagation through Time

Loss

7T TN

Run forward and backward

through chunks of the sequence
t £ttt ot Instead of whole sequence




Truncated Backpropagation through Time

Loss

RN

/ | l |

Carry hidden states forward in
time forever, but only
backpropagate for some
smaller number of steps




Truncated Backpropagation through Time
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Vanilla RNN Gradient Flow

Yi h, = tanh(Whhht—1 + thxt)
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Vanilla RNN Gradient Flow
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Vanilla RNN Gradient Flow




Vanilla RNN Gradient Flow
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https://en.wikipedia.org/wiki/Matrix norm



https://en.wikipedia.org/wiki/Matrix_norm

Vanilla RNN Gradient Flow

* Exploding gradients Haczht |2 > 1

t—1

* Gradient clipping  grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
grad *= (threshold / grad_norm)

Ohy
<1
ol

* Change RNN architecture

* Vanishing gradients




Summary

* RNNs can be used for sequential data to capture dependencies in
time

* LSTMs and GRUs are better then vanilla RNNs
* It is difficult to capture long-term dependencies in RNNs

e Use transformers (in future lectures)




Further Reading

e Stanford CS231n, lecture 10, Recurrent Neural Networks
http://cs231n.stanford.edu/

* Long Short Term Memory
https://www.researchgate.net/publication/13853244 Long Short-
term_Memory

* Gated Recurrent Units https://arxiv.org/pdf/1412.3555.pdf



http://cs231n.stanford.edu/
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://arxiv.org/pdf/1412.3555.pdf
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