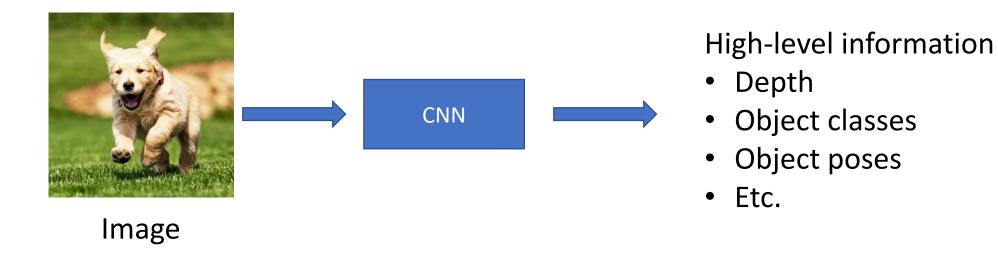


CS 4391 Introduction Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Some slides of this lecture are courtesy Stanford CS231n

Single Images

Convolutional neural networks



Sequential Data

- Data depends on time
 - Video

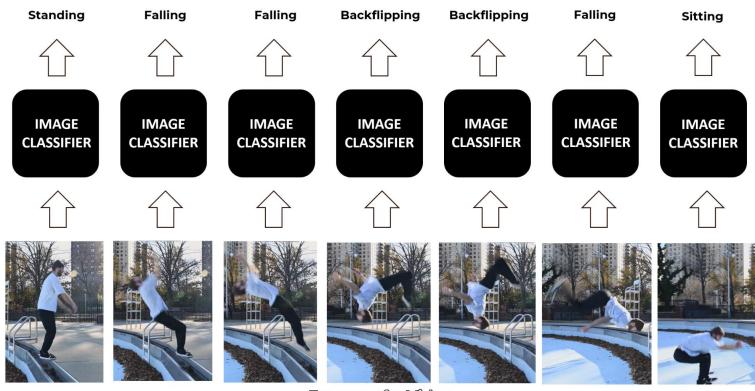
• Sentence

UT Dallas is a rising public research university in the heart of DFW.

t

Sequential Data Labeling

Video frame labeling

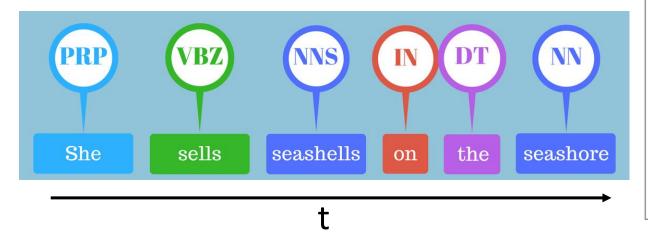


Frames of a Video

https://bleedai.com/human-activity-recognition-using-tensorflow-cnn-lstm/

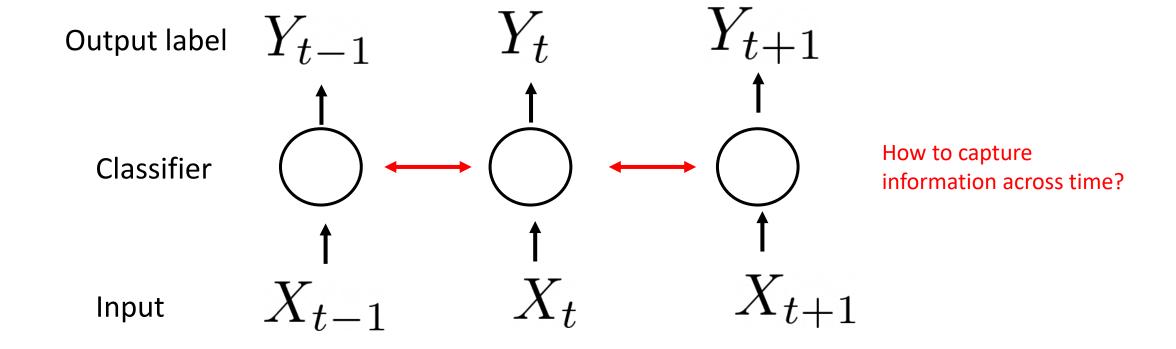
Sequential Data Labeling

Part-of-speech tagging (grammatical tagging)



Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
	punctuation marks	.,;!
X	other	ersatz, esprit, dunno, gr8, univeristy

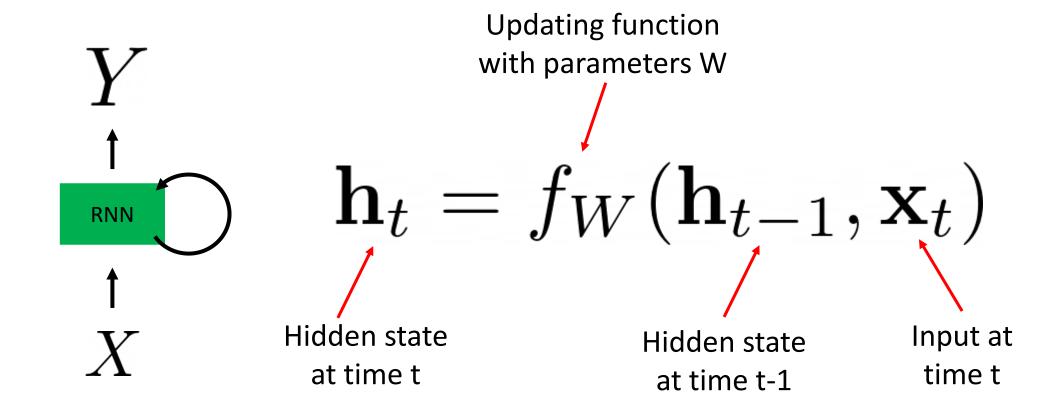
Sequential Data Labeling



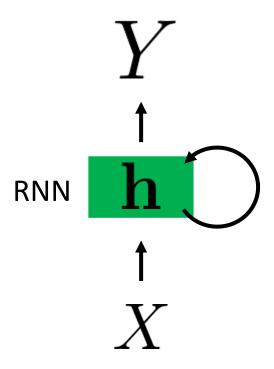
Recurrent Neural Networks



Hidden State Update



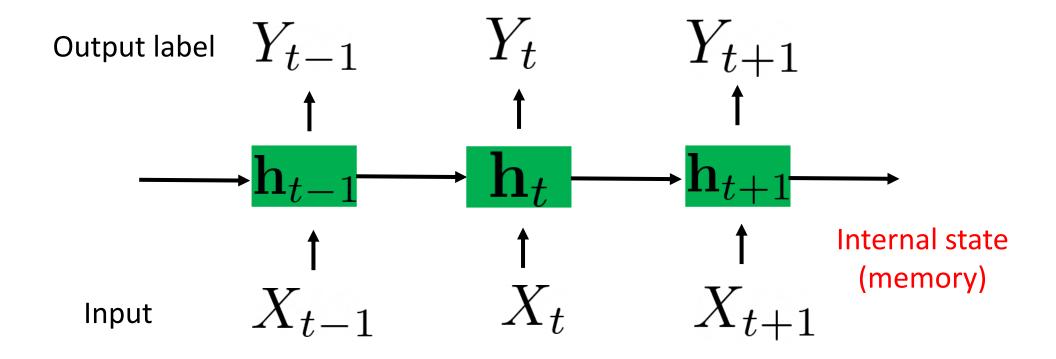
Using the Hidden State



$$\mathbf{h}_t = f_W(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

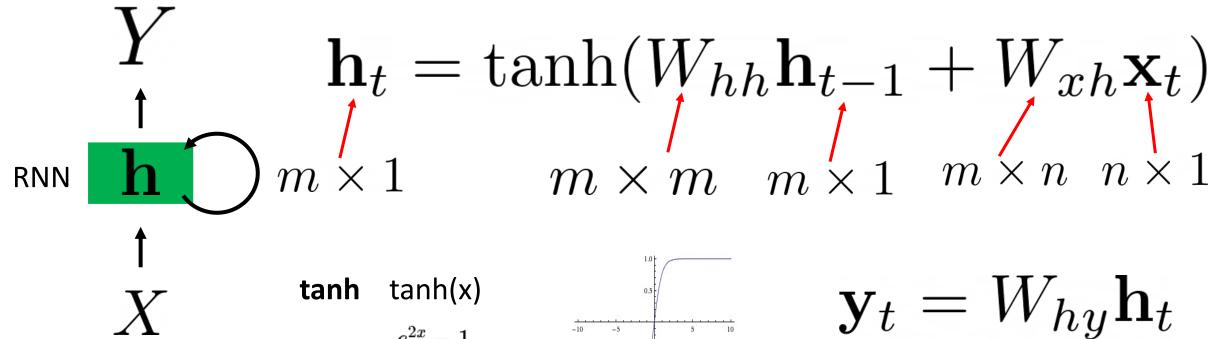
$$\mathbf{y}_t = f_{W'}(\mathbf{h}_t)$$

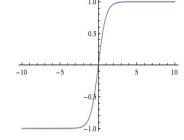
Recurrent Neural Networks

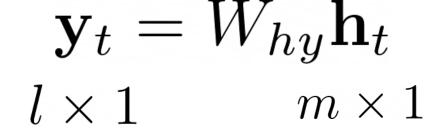


Vanilla RNN

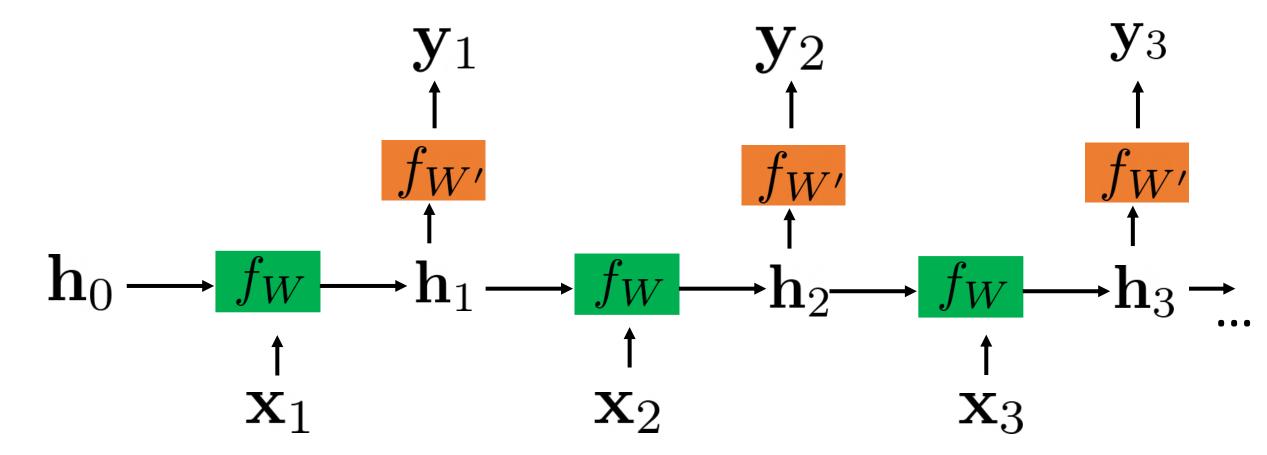
Hidden state updating rule



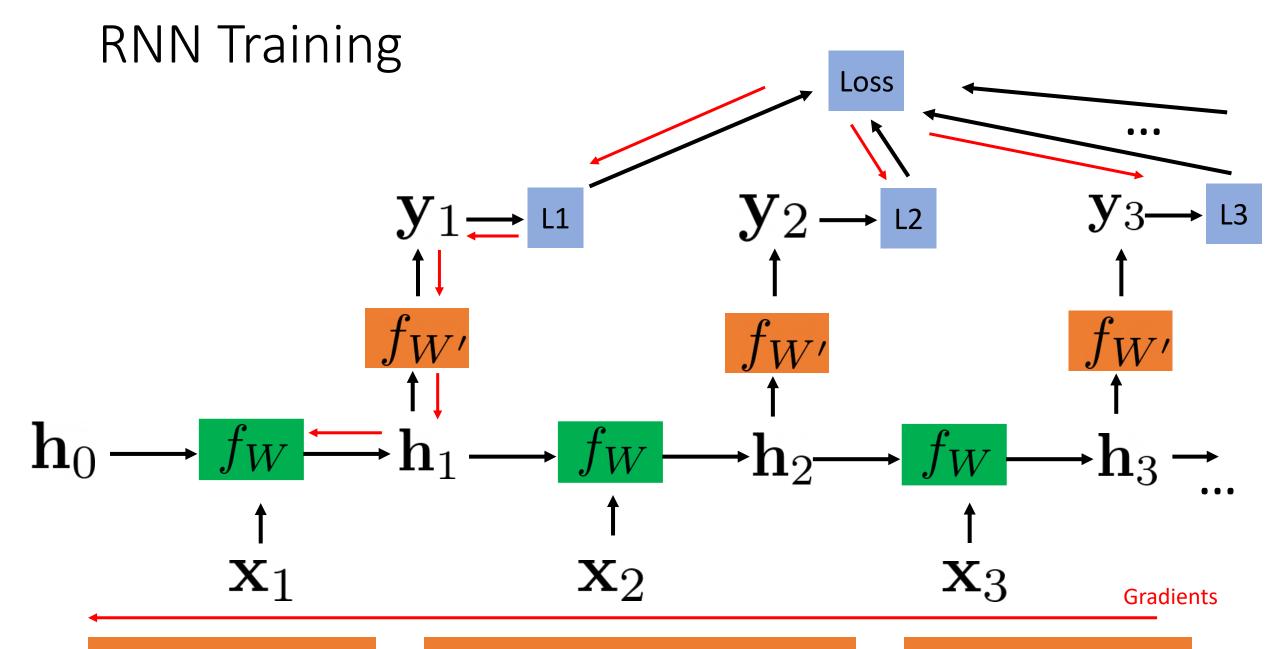




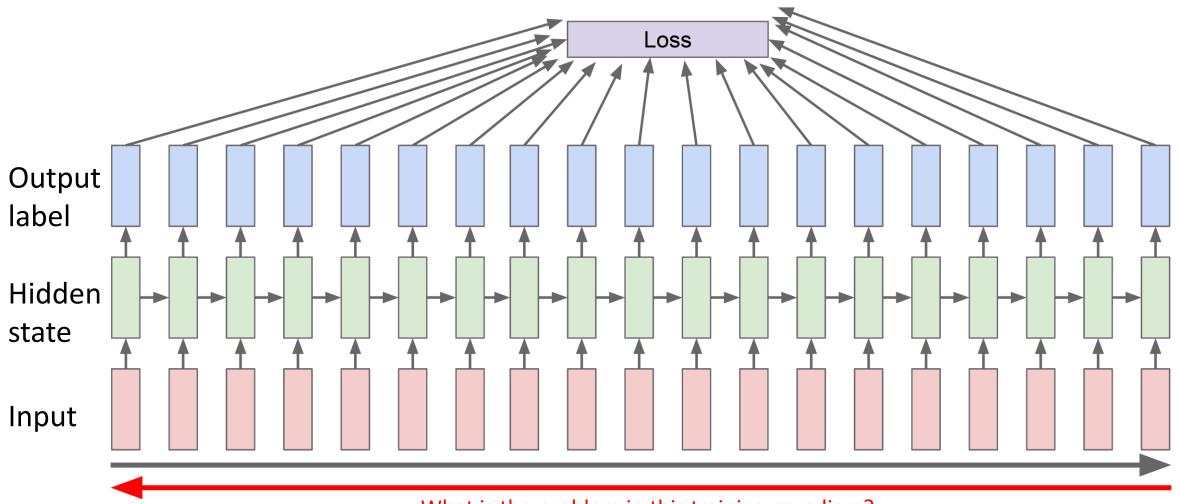
RNN Computation Graph



The same set of weights for different time steps f_W $f_{W'}$

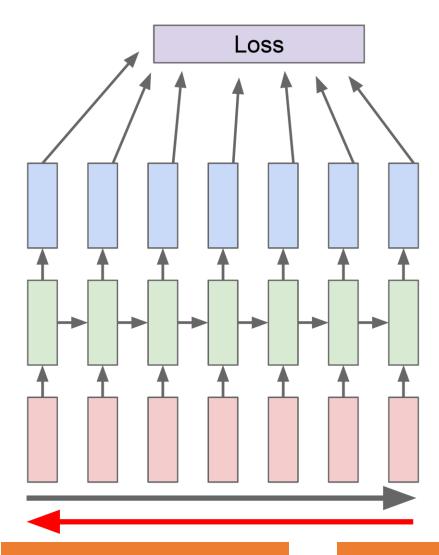


Backpropagation through Time



What is the problem in this training paradigm?

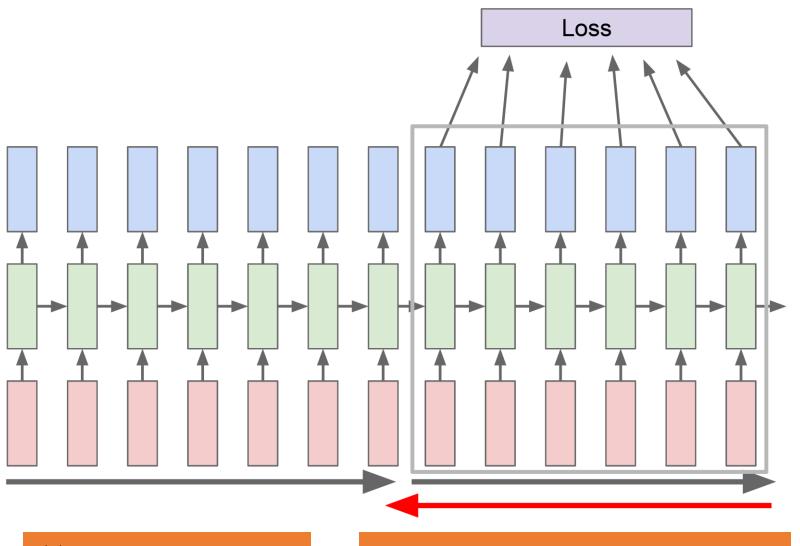
Truncated Backpropagation through Time



Run forward and backward through chunks of the sequence instead of whole sequence

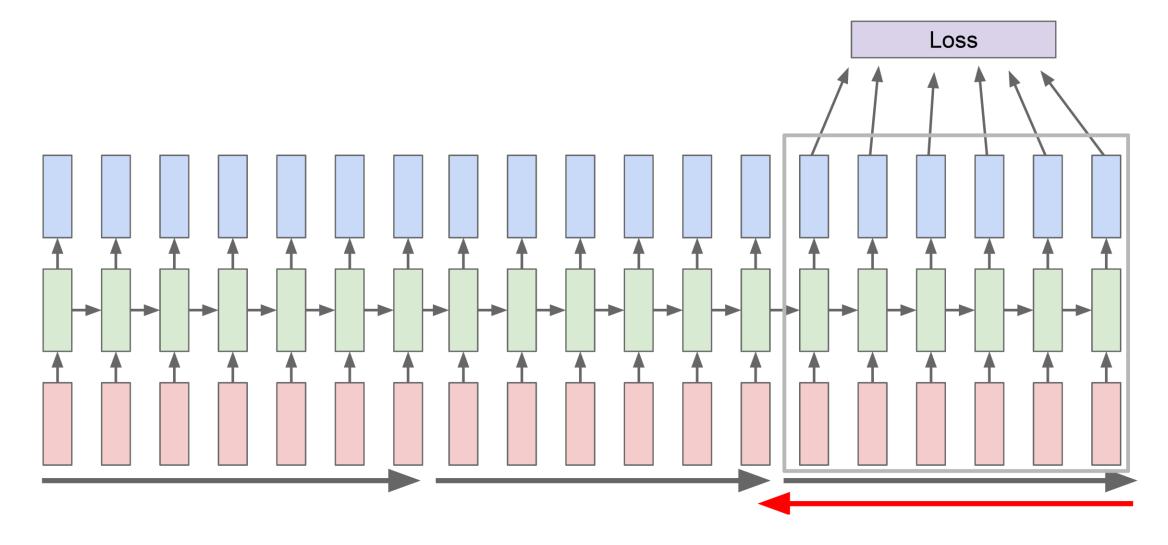
4/9/2024

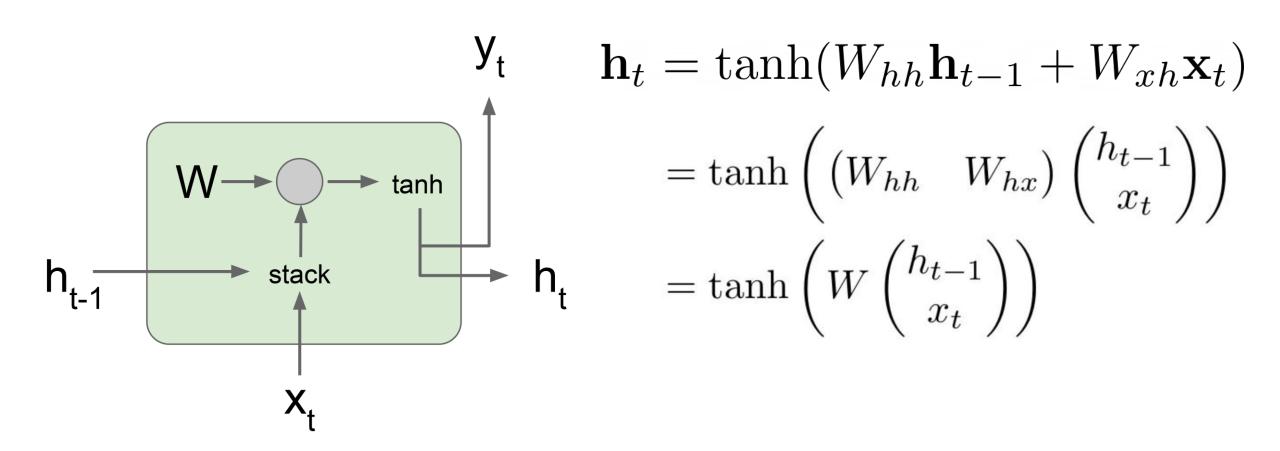
Truncated Backpropagation through Time

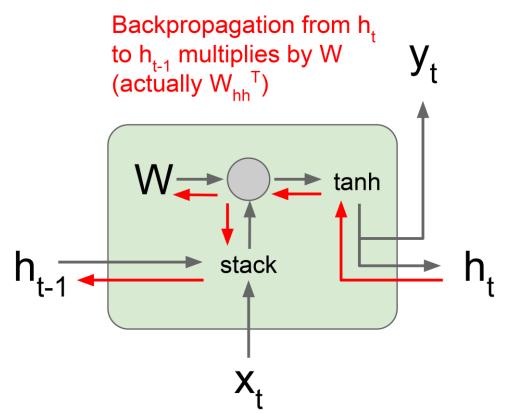


Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through Time





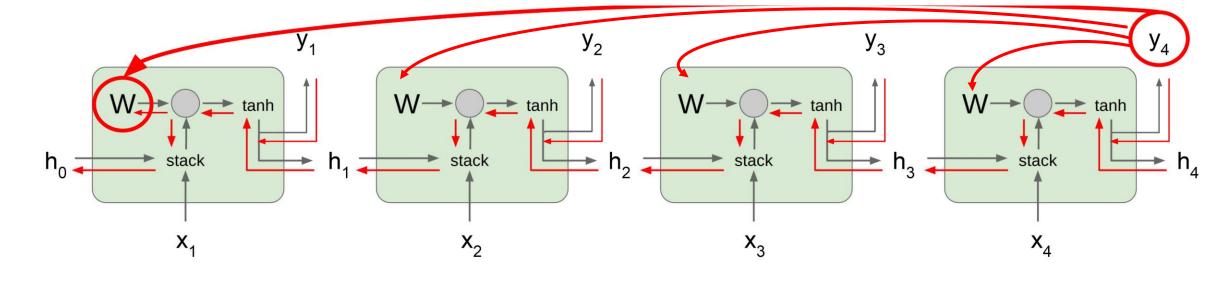


$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

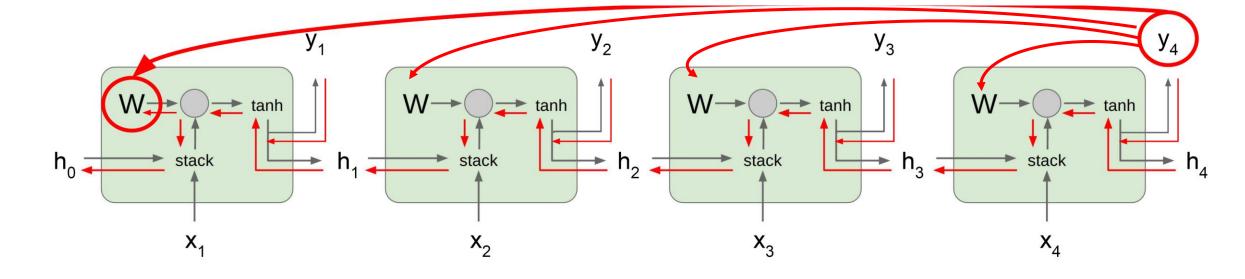
$$= \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$rac{\partial h_t}{\partial h_{t-1}} = tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}$$



$$rac{\partial L}{\partial W} = \sum_{t=1}^{T} rac{\partial L_t}{\partial W}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \dots \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} (\prod_{t=2}^T \frac{\partial h_t}{\partial h_{t-1}}) \frac{\partial h_1}{\partial W}$$



$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} (\prod_{t=2}^T rac{\partial h_t}{\partial h_{t-1}}) rac{\partial h_1}{\partial W}$$

Vanishing gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 < 1$$

Exploding gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 > 1$$

https://en.wikipedia.org/wiki/Matrix norm

• Exploding gradients
$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 > 1$$

Gradient clipping

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
  grad *= (threshold / grad_norm)
```

• Vanishing gradients
$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 < 1$$

Change RNN architecture

Summary

 RNNs can be used for sequential data to capture dependencies in time

LSTMs and GRUs are better then vanilla RNNs

• It is difficult to capture long-term dependencies in RNNs

Use transformers (in future lectures)

23

Further Reading

 Stanford CS231n, lecture 10, Recurrent Neural Networks http://cs231n.stanford.edu/

Long Short Term Memory
 https://www.researchgate.net/publication/13853244 Long Short-term Memory

Gated Recurrent Units https://arxiv.org/pdf/1412.3555.pdf