

CS 4391 Introduction Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Some slides of this lecture are courtesy Stanford CS231n

Visual Perception vs. Computational Perception

Mathematic Models

 Try to model the human brain with computational models, e.g., neural networks

Mathematic Models

- What is the form of the function f(x)?
 - No idea!
 - Concatenate simple functions (neurons)

Neural Network: Concatenation of functions

Linear score function:
$$f=Wx$$

2-layer Neural Network

$$f = f_2(f_1(x)) = W_2 \max(0, W_1x)$$

Non-linearity

$$h = f_1(X)$$

$$h = f_1(X)$$

$$s = f_2(h)$$

Need to learn the weights!

Frank Rosenblatt's Perceptron

$$\sigma(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} 1 \text{ if } \mathbf{w}^T \mathbf{x} + b \ge 0, \\ 0 \text{ otherwise.} \end{cases}$$

Frank Rosenblatt (1928-1971)

3/27/2024 Yu Xiang

Activation Functions

2-layer Neural Network

$$f = f_2(f_1(x)) = W_2 \max(0, W_1x)$$

Rectified Linear Unit (ReLU) max(0,x)

Introduce non-linearity to the network

Activation Functions

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

tanh(x) tanh

$$\frac{e^{2x}-1}{e^{2x}+1}$$

max(0,x)**ReLU**

Leaky ReLU max(0.1x, x)

Maxout

 $\max(w_1^Tx+b_1,w_2^Tx+b_2)$

Linear Unit

ELU Exponential
$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Fully Connected Layer

3/27/2024 Yu Xiang

Fully Connected Layer

What is the drawback of only using fully connected layers?

$$y = Wx$$

- Consider an image with 640 x 480
 - x is with dimension 307,200
 - The weight matrix of the fully connect layer is too large

Consist of convolutional filters

Share weights among different image locations

$$g(x,y) = rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

Gaussian Filter

Learn the weights!

Convolutional Neural Networks

Convolutional Neural Networks

[LeNet-5, LeCun 1980]

32x32x3 image

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 1

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 1

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 1

,

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 1

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 1

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 1

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 1

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 1

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 1

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 1

=> 5x5 output

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 2

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 2

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 2

=> 3x3 output!

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 3

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter, with stride 3

doesn't fit!
cannot apply 3x3 filter on 7x7
input with stride 3.

Output size:

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$

0	0	0	0	0	0		
0							
0							
0							
0							

In practice: Common to zero pad the border

```
e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is
the output?
```

```
(recall:)
(N - F) / stride + 1
```

0	0	0	0	0	0		
0							
0							
0							
0							

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is
the output?

7x7 output!

0	0	0	0	0	0		
0							
0							
0							
0							

In practice: Common to zero pad the border

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3
```


consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Convolutional Neural Networks

Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Max Pooling Layer

Single depth slice

Further Reading

- Stanford CS231n, lecture 5, Convolutional Neural Networks http://cs231n.stanford.edu/schedule.html
- Deep learning with PyTorch
 https://pytorch.org/tutorials/beginner/deep learning 60min blitz.html
- AlexNet (2012): <u>https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html</u>
- Vgg16 (2014): https://arxiv.org/abs/1409.1556
- GoogleNet (2014): https://arxiv.org/abs/1409.4842
- ResNet (2015): https://arxiv.org/abs/1512.03385