Structure from Motion I

CS 4391 Introduction Computer Vision Professor Yu Xiang
The University of Texas at Dallas

Triangulation

- Compute the 3D point given image correspondences

Intersection of two backprojected lines

$$
\mathbf{X}=\mathbf{l} \times \mathbf{l}^{\prime}
$$

Triangulation

- In practice, we find the correspondences y \mathbf{y}^{\prime}
- The backprojected lines may not intersect
- Find X^{*} that minimizes

Triangulation

- Idea: using images from different views and feature matching
- Triangulation from pixel correspondences to compute 3D location

Structure from Motion

- Input
- A set of images from different views
- Output

- 3D Locations of all feature points in a world frame
- Camera poses of the images

Structure from motion

Structure from Motion

- Minimize sum of squared reprojection errors

$$
\begin{aligned}
& g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\|\underbrace{\| \mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)}_{\begin{array}{c}
\text { predicted } \\
\text { mage location, } n \text { images }
\end{array}}-\underbrace{\left[\begin{array}{c}
u_{i, j} \\
v_{i, j}
\end{array}\right]}_{\begin{array}{c}
\text { observed } \\
\text { image location }
\end{array}}\|^{2} \\
& \text { Indicator variable: } \\
& \text { is point } i \text { visible in image } j \text { ? }
\end{aligned}
$$

Projection

$$
\begin{aligned}
& u^{\prime}=f_{x} \frac{x^{\prime}}{z^{\prime}}+p_{x} \\
& v^{\prime}=f_{y} \frac{y^{\prime}}{z^{\prime}}+p_{y}
\end{aligned} \quad\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\mathbf{P}(\mathbf{x}, \mathbf{R}, \mathbf{t})
$$

Structure from Motion

- How to minimize

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\left\|\mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)-\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right]\right\|^{2}
$$

- A non-linear least squares problem (why?)
- E.g. Levenberg-Marquardt

The Levenberg-Marquardt Algorithm

- Nonlinear least squares $\quad \begin{gathered}\hat{\boldsymbol{\beta}} \in \operatorname{argmin}_{\beta} S(\boldsymbol{\beta}) \equiv \operatorname{argmin}_{\beta} \sum_{i=1}^{m}\left[y_{i}-f\left(x_{i}, \beta\right)\right]^{2} \\ n \times 1\end{gathered}$
- An iterative algorithm
- Start with an initial guess β_{0}
- For each iteration $\beta \leftarrow \beta+\delta$
- How to get δ ?
- Linear approximation $f\left(x_{i}, \boldsymbol{\beta}+\boldsymbol{\delta}\right) \approx f\left(x_{i}, \boldsymbol{\beta}\right)+\mathbf{J}_{i} \boldsymbol{\delta} \quad \mathbf{J}_{i}=\frac{\partial f\left(x_{i}, \boldsymbol{\beta}\right)}{\partial \boldsymbol{\beta}} 1 \times n$
- Find δ to minimize the objective $S(\boldsymbol{\beta}+\boldsymbol{\delta}) \approx \sum_{i=1}^{m}\left[y_{i}-f\left(x_{i}, \boldsymbol{\beta}\right)-\mathbf{J}_{i} \boldsymbol{\delta}\right]^{2}$

The Levenberg-Marquardt Algorithm

- Vector notation for $S(\boldsymbol{\beta}+\boldsymbol{\delta}) \approx \sum_{i=1}^{m}\left[y_{i}-f\left(x_{i}, \boldsymbol{\beta}\right)-\mathbf{J}_{i} \boldsymbol{\delta}\right]^{2}$

$$
\begin{aligned}
S(\boldsymbol{\beta}+\boldsymbol{\delta}) & \approx\|\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})-\mathbf{J} \boldsymbol{\delta}\|^{2} \\
& =[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})-\mathbf{J} \boldsymbol{\delta}]^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})-\mathbf{J} \boldsymbol{\delta}] \\
& =[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]-[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]^{\mathrm{T}} \mathbf{J} \boldsymbol{\delta}-(\mathbf{J} \boldsymbol{\delta})^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]+\boldsymbol{\delta}^{\mathrm{T}} \mathbf{J}^{\mathrm{T}} \mathbf{J} \boldsymbol{\delta} \\
& =[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]-2[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]^{\mathrm{T}} \mathbf{J} \boldsymbol{\delta}+\boldsymbol{\delta}^{\mathrm{T}} \mathbf{J}^{\mathrm{T}} \mathbf{J} \boldsymbol{\delta} .
\end{aligned}
$$

Take derivation with respect to δ and set to zero $\quad\left(\mathbf{J}^{\mathrm{T}} \mathbf{J}\right) \boldsymbol{\delta}=\mathbf{J}^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})] \quad \frac{\mathrm{https}: / / \mathrm{www.cs.ubc.ca/} / \text { schmidtm } / \text { Course }}{\text { s/340-F16/linearQuadraticGradients.pdf }}$

Levenberg's contribution $\left(\mathbf{J}^{\mathrm{T}} \mathbf{J}+\lambda \mathbf{I}\right) \boldsymbol{\delta}=\mathbf{J}^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})] \quad$ damped version

$$
\beta \leftarrow \beta+\delta
$$

Structure from Motion

$$
\begin{aligned}
& g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{\sum_{\underbrace{}_{i j}}^{n}} \cdot\|\underbrace{\mathbf{P}_{i}\left(\mathbf{X}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)}_{\substack{\downarrow \\
w_{i}}}-\underbrace{\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right] \|_{\text {image location }}^{\text {observed }}}_{\text {predicted }}\|_{\text {image location }}^{2} \\
& \text { indicator variable: } \\
& \text { is point } i \text { visible in image } j \text { ? } \\
& \beta=(\mathbf{X}, \mathbf{R}, \mathbf{T})
\end{aligned}
$$

How to get the initial estimation β_{0} ?

Random guess is not a good idea.

Matching Two Views

- Fundamental matrix

$$
\mathbf{x}^{\prime} \text { is on the epiploar line } \mathbf{l}^{\prime}=F \mathbf{x}
$$

$$
\mathbf{x}^{\prime T} F \mathbf{x}=0
$$

The 8-point algorithm

Further Reading

- Chapter 11, Computer Vision, Richard Szeliski
- Build Rome in One Day https://grail.cs.washington.edu/rome/
- Structure from Motion Revisited https://colmap.github.io/index.html

