Epipolar Geometry

CS 4391 Introduction Computer Vision Professor Yu Xiang
The University of Texas at Dallas

Epipolar Geometry

- The geometry of stereo vision
- Given 2D images of two views
- What is the relationship between pixels of the images?
- Can we recover the 3D structure of the world from the 2D images?

Wikipedia

Epipolar Geometry

Epipolar Geometry

Epipolar Geometry

Rotation and Translation
between two views

Epipolar Geometry

- What is the mapping for a point in one image to its epipolar line?

2D Lines

- A line in a 2D plane $a x+b y+c=0 \quad \mathrm{x}=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- It is parameterized by $\mathbf{l}=(a, b, c)^{T}{ }_{\text {Homogeneous Coordinates }}$

$$
k(a, b, c)^{T} \quad \text { represents the same line for nonzero } \mathrm{k}
$$

- Line equation

$$
\mathbf{x}^{T} \mathbf{l}=0 \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad \mathbf{l}=\left[\begin{array}{l}
u \\
b \\
c
\end{array}\right]
$$

A Line Joining two Points

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad \mathbf{x}^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]
$$

$$
\mathbf{l}=\mathrm{x} \times \mathrm{x}^{\prime}
$$

$$
\mathrm{x} \cdot\left(\mathrm{x} \times \mathrm{x}^{\prime}\right)=\mathrm{x}^{\prime} \cdot\left(\mathrm{x} \times \mathrm{x}^{\prime}\right)=0
$$

$$
\mathbf{x}^{T} \mathbf{l}=\mathbf{x}^{\prime T} \mathbf{l}=0
$$

Vector cross product
$\mathbf{a} \times \mathrm{b}$

$\mathbf{a} \times \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \sin (\theta) \mathbf{n}$
$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

Vector dot product

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

Fundamental Matrix

- Recall camera projection

$$
\begin{aligned}
& P=K[R \mid \mathbf{t}] \\
& \mathbf{x}=P \mathbf{X} \quad \text { Homogeneusus coordinates }
\end{aligned}
$$

- Backprojection

$$
\mathbf{X}(\lambda)=(1-\lambda) P^{+} \mathbf{x}+\lambda C
$$

$$
\begin{aligned}
& P^{+} \mathbf{x} \text { and } C \text { are two oonts on the eay } \\
& P^{+} \text {istre pesudo-iverseof } P, P P^{+}=I \\
& P^{+}=P^{T}\left(P P^{T}\right)^{-1}
\end{aligned}
$$

Fundamental Matrix

$P^{+} \mathbf{X}$ and C are two points on the ray

- Project to the other image

- Epipolar line

$$
\mathbf{l}^{\prime}=\left(P^{\prime} C\right) \times\left(P^{\prime} P^{+} \mathbf{x}\right)
$$

${ }_{\text {Epipole }} \mathbf{e}^{\prime}=\left(P^{\prime} C\right)$

Skew-symmetric Matrix

$$
x=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]^{\mathrm{T}} \in \mathbb{R}^{3} \quad[x]=\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right]
$$

$\mathbf{X} \times \mathbf{y}=[\mathbf{x}] \mathbf{y} \quad[x]=-[x]^{\mathrm{T}}$
https://en.wikipedia.org/wiki/Skew-symmetric matrix

Fundamental Matrix

- Epipolar line

$$
\begin{aligned}
& \mathbf{l}^{\prime}=\left(P^{\prime} C\right) \times\left(P^{\prime} P^{+} \mathbf{x}\right) \\
& \text { Epipole } \mathbf{e}^{\prime}=\left(P^{\prime} C\right) \\
& \mathbf{l}^{\prime}=\left[\mathbf{e}^{\prime}\right]_{\times}\left(P^{\prime} P^{+} \mathbf{x}\right)=F \mathbf{x}
\end{aligned}
$$

- Fundamental matrix
$F=\left[\mathbf{e}^{\prime}\right]_{\times} P^{\prime} P^{+}$
3×3
$\mathbf{l}^{\prime}=F \mathbf{x}$

Fundamental Matrix

$$
\underset{\text { coppuburpanem } \pi}{\times} \quad F=\left[\mathbf{e}^{\prime}\right]_{\times} P^{\prime} P^{+} \quad \mathbf{e}^{\prime}=\left(P^{\prime} C\right)
$$

$$
\mathrm{P}=\mathrm{K}[\mathrm{I} \mid \mathbf{0}] \quad \mathrm{P}^{\prime}=\mathrm{K}^{\prime}[\mathrm{R} \mid \mathbf{t}]
$$

$$
\mathrm{P}^{+}=\left[\begin{array}{c}
\mathrm{K}^{-1} \\
\mathbf{0}^{\top}
\end{array}\right]
$$

$$
\mathbf{C}=\binom{\mathbf{0}}{1}
$$

$\left.R, t \quad \mathrm{~F}={ }_{[\mathrm{P}} \mathbf{\prime} \mathbf{C}\right]_{\times} \mathrm{P}^{\prime} \mathrm{P}^{+}$

$$
=\left[\mathrm{K}^{\prime} \mathbf{t}\right]_{\times} \mathrm{K}^{\prime} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-\top}[\mathbf{t}]_{\times} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-\top} \mathrm{R}\left[\mathrm{R}^{\top} \mathbf{t}\right]_{\times} \mathrm{K}^{-1}=\mathrm{K}^{\prime-\top} \mathrm{RK}^{\top}\left[\mathrm{KR}^{\top} \mathbf{t}\right]_{\times}
$$

$e=P\binom{-R^{\top} t}{1}=K R^{\top} t$

$$
\mathrm{e}^{\prime}=\mathrm{P}^{\prime}\binom{0}{1}=\mathrm{K}^{\prime} \mathrm{t}
$$

$$
\mathrm{F}=\left[\mathbf{e}^{\prime}\right]_{\times} \mathrm{K}^{\prime} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-\mathrm{T}}[\mathbf{t}]_{\times} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-\mathrm{T}} \mathrm{R}\left[\mathrm{R}^{\top} \mathbf{t}\right]_{\times} \mathrm{K}^{-1}=\mathrm{K}^{\prime-\mathrm{T}} \mathrm{RK}^{\top}[\mathbf{e}]_{\times}
$$

Properties of Fundamental Matrix

$$
\begin{gathered}
\mathbf{x}^{\prime} \text { is on the epiploar line } \mathbf{l}^{\prime}=F \mathbf{x} \\
\mathbf{x}^{\prime T} F \mathbf{x}=0
\end{gathered}
$$

- Transpose: if F is the fundamental matrix of $\left(P, P^{\prime}\right)$, then F^{\top} is the fundamental matrix of $\left(P^{\prime}, P\right)$
- Epipolarline: $\mathbf{l}^{\prime}=F \mathbf{x} \quad \mathbf{l}=F^{T} \mathbf{x}^{\prime}$
- Epipole: $\quad \mathbf{e}^{\prime \top} \mathrm{F}=\mathbf{0} \quad \mathrm{Fe}=\mathbf{0}$

$$
\mathbf{e}^{\prime \top}(\mathrm{Fx})=\left(\mathrm{e}^{\prime \top} \mathrm{F}\right) \mathbf{x}=0 \text { for all } \mathbf{x}
$$

- 7 degrees of freedom

$$
\operatorname{det} F=0
$$

Why the Fundamental Matrix is Useful?

Further Reading

- Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 5 https://web.stanford.edu/class/cs231a/syllabus.html
- Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Chapter 9, Epipolar Geometry and Fundamental Matrix

