

CS 4391 Introduction Computer Vision Professor Yu Xiang The University of Texas at Dallas

- The geometry of stereo vision
 - Given 2D images of two views
 - What is the relationship between pixels of the images?
 - Can we recover the 3D structure of the world from the 2D images?

Wikipedia

Rotation and Translation between two views

• What is the mapping for a point in one image to its epipolar line?

2D Lines

- A line in a 2D plane ax + by + c = 0 $\mathbf{x} = \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$
- It is parameterized by $\, {f l} = (a,b,c)^T\,$ Homogeneous Coordinates

 $k(a,b,c)^T$ represents the same line for nonzero k

• Line equation $\begin{bmatrix} x \end{bmatrix}$ $\begin{bmatrix} a \end{bmatrix}$

$$\mathbf{x}^T \mathbf{l} = 0 \quad \mathbf{x} = \begin{bmatrix} y \\ 1 \end{bmatrix} \quad \mathbf{l} = \begin{bmatrix} b \\ c \end{bmatrix}$$

• Recall camera projection

 $P = K[R|\mathbf{t}]$

 ${f x}=P{f X}$ Homogeneous coordinates • Backprojection $P^+{f x}$ and C are two points on the ray

 P^+ is the pseudo-inverse of $P, PP^+ = I$ $P^+ = P^T (PP^T)^{-1}$

 $\mathbf{X}(\lambda) = (1 - \lambda)P^{+}\mathbf{x} + \lambda C$

 $P^+\mathbf{x}$ and C are two points on the ray

• Project to the other image

$$P'P^+{f x}$$
 and $P'C$

- Epipolar line
- $\mathbf{l}' = (P'C) \times (P'P^+\mathbf{x})$ Epipole $\mathbf{e}' = (P'C)$

Skew-symmetric Matrix

$$x = [x_1 \ x_2 \ x_3]^{\mathrm{T}} \in \mathbb{R}^3 \qquad [x] = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}$$

$$\mathbf{x} \times \mathbf{y} = [\mathbf{x}]\mathbf{y}$$
 $[x] = -[x]^{\mathrm{T}}$

https://en.wikipedia.org/wiki/Skew-symmetric_matrix

- Epipolar line $\mathbf{l}' = (P'C) \times (P'P^+\mathbf{x})$ Epipole $\mathbf{e}' = (P'C)$ $\mathbf{l}' = [\mathbf{e}']_{\times}(P'P^+\mathbf{x}) = F\mathbf{x}$
 - Fundamental matrix $F = [\mathbf{e'}]_{\times} P' P^+$

3x3

 $\mathbf{l}' = F\mathbf{x}$

Properties of Fundamental Matrix

$$\mathbf{x'}$$
 is on the epiploar line $\mathbf{l'}=F\mathbf{x}$
 $\mathbf{x'}^TF\mathbf{x}=0$

- Transpose: if F is the fundamental matrix of (P, P'), then F^T is the fundamental matrix of (P', P)
- Epipolar line: $\mathbf{l}' = F\mathbf{x}$ $\mathbf{l} = F^T\mathbf{x}'$
- · Epipole: $e'^{\mathsf{T}}\mathsf{F} = 0$ Fe = 0

 $\mathbf{e}^{\prime \mathsf{T}}(\mathbf{F}\mathbf{x}) = (\mathbf{e}^{\prime \mathsf{T}}\mathbf{F})\mathbf{x} = 0$ for all \mathbf{x}

• 7 degrees of freedom

 $\det \mathbf{F} = \mathbf{0}$

Why the Fundamental Matrix is Useful?

 $\mathbf{l}' = F\mathbf{p}$

Further Reading

- Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 5 <u>https://web.stanford.edu/class/cs231a/syllabus.html</u>
- Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Chapter 9, Epipolar Geometry and Fundamental Matrix