Camera Calibration

CS 4391 Introduction Computer Vision Professor Yu Xiang
The University of Texas at Dallas

Some slides of this lecture are courtesy Silvio Savarese

Recap Camera Models

- Camera projection matrix

Camera intrinsics
Camera extrinsics:
rotation and translation

$$
K=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & c_{x} \\
0 & \frac{\beta}{\sin \theta} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Camera Calibration

- Estimate the camera intrinsics and camera extrinsics $P=K[R \mid \mathbf{t}]$
- Why is this useful?
- If we know K and depth, we can compute 3D points in camera frame
- In stereo matching to compute depth, we need to know focal length
- Camera pose tracking is critical in SLAM (Simultaneous Localization and Mapping)

Camera Calibration

- Estimate the camera intrinsics and camera extrinsics $P=K[R \mid \mathbf{t}]$
- Idea: using images from the camera with a known world coordinate frame

Camera Calibration

- Unknowns

Camera intrinsics K
$\begin{array}{ll}\text { Camera extrinsics: } \\ \text { rotation and translation }\end{array} \quad R, \Gamma$

- Knowns

World coordinates P_{1}, \ldots, P_{n}
Pixel coordinates $\quad p_{1}, \ldots, p_{n}$

Camera Calibration

$K=\left[\begin{array}{ccc}\alpha & -\alpha \cot \theta & c_{x} \\ 0 & \frac{\beta}{\sin \theta} & c_{y} \\ 0 & 0 & 1\end{array}\right]$

- How many unknowns in M ?
- 11
- How many correspondences do we need to estimate M ?
- We need 11 equations
- 6 correspondences
- More correspondences are better

A Linear Approach to Camera Calibration

$$
p_{i}=M P_{i}=K[R \mid T] P_{i}
$$

$$
M=\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right] \begin{aligned}
& 1 \times 4 \\
& 1 \times 4 \\
& 1 \times 4
\end{aligned} \quad M P_{i}=\left[\begin{array}{l}
\mathbf{m}_{1} P_{i} \\
\mathbf{m}_{2} P_{i} \\
\mathbf{m}_{3} P_{i}
\end{array}\right] \quad \begin{gathered}
p_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i}
\end{array}\right]=\left[\begin{array}{l}
\frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\
\frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}}
\end{array}\right]
\end{gathered}
$$

$$
\begin{array}{ll}
\text { A pair of equations } & u_{i}\left(m_{3} P_{i}\right)-m_{1} P_{i}=0 \\
& v_{i}\left(m_{3} P_{i}\right)-m_{2} P_{i}=0
\end{array}
$$

A Linear Approach to Camera Calibration

- Given n correspondences $p_{i}=\left[\begin{array}{l}u_{i} \\ v_{i}\end{array}\right] \leftrightarrow P_{i}$

$$
\begin{aligned}
u_{1}\left(m_{3} P_{1}\right)-m_{1} P_{1} & =0 \\
v_{1}\left(m_{3} P_{1}\right)-m_{2} P_{1} & =0
\end{aligned}
$$

$2 n$ equations

$$
\begin{aligned}
& u_{n}\left(m_{3} P_{n}\right)-m_{1} P_{n}=0 \\
& v_{n}\left(m_{3} P_{n}\right)-m_{2} P_{n}=0
\end{aligned}
$$

How to solve this linear system?

Linear System

$\mathbf{P} m=0$
 $$
2 n \times 12 \quad 12 \times 1
$$

- Find non-zero solutions
- If m is a solution, $\mathrm{k} \times \mathrm{m}$ is also a solution for $k \in \mathcal{R}$
- We can seek a solution $\|m\|=1$

$$
\begin{gathered}
\min \|\mathbf{P} m\| \\
\text { subject to }\|m\|=1
\end{gathered}
$$

Singular Value Decomposition

The SVD is a factorization of a $m \times n$ matrix into

$$
A=U \boldsymbol{\Sigma} V^{\boldsymbol{T}}
$$

where \boldsymbol{U} is a $m \times m$ orthogonal matrix, $\boldsymbol{V}^{\boldsymbol{T}}$ is a $n \times n$ orthogonal matrix and $\boldsymbol{\Sigma}$ is a $m \times n$ diagonal matrix.

$$
\begin{aligned}
& \text { For a square matrix }(\boldsymbol{m}=\boldsymbol{n}) \text { : } \\
& \boldsymbol{A}=\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \mathbf{v}_{n}^{T} & \ldots
\end{array}\right) \quad \begin{array}{l}
\text { non-negative real numbers on } \\
\text { the diagonal }
\end{array}
\end{aligned}
$$

Linear System

$$
\begin{array}{r}
\min \|\mathbf{P} m\| \\
\|m\|=1
\end{array}
$$

Singular value decomposition (SVD)

$$
\begin{aligned}
& P=U D V^{T} \quad\|P m\|=\left\|U D V^{T} m\right\|=\left\|D V^{T} m\right\| \\
& \|m\|=\left\|V^{T} m\right\| \quad \min \left\|D V^{T} m\right\| \quad \text { s.t. }\left\|V^{T} m\right\|=1 \\
& \text { Let } y=V^{T} m \quad \min \|D y\| \text { s.t. }\|y\|=1 \quad \mathrm{y}=(0,0, \ldots, 0,1)^{T} \\
& m=V \mathbf{y} \quad \text { mis the last column of } V
\end{aligned}
$$

Linear System

$\mathbf{P} m=0$

$2 n \times 1212 \times 1$

$\min \|\mathbf{P} m\|$
subject to $\|m\|=1$
Solution: $P=U D V^{T} \quad$ SVD decomposition of P
$$
2 n \times 2 n \quad 2 n \times 12 \quad 12 \times 12
$$
m is the last column of V
A5.3 in Multiview Geometry in Computer Vision

A Linear Approach to Camera Calibration

$$
p_{i}=M P_{i}=K[R \mid T] P_{i}
$$

$$
\mathbf{P} m=0
$$

m is the last column of V
$m \rightarrow M$ uptosale

$$
\begin{aligned}
& K=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & c_{x} \\
0 & \frac{\beta}{\sin \theta} & c_{y} \\
0 & 0 & 1
\end{array}\right] \quad \mathrm{R}=\left[\begin{array}{c}
\mathbf{r}_{1}^{\mathrm{T}} \\
\mathbf{r}_{2}^{\mathrm{T}} \\
\mathbf{r}_{3}^{\mathrm{T}}
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{c}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}} \\
\mathrm{t}_{\mathrm{z}}
\end{array}\right] \\
& 3 \text { rows }
\end{aligned}
$$

$$
\rho M=\left[\begin{array}{cc}
\alpha r_{1}^{T}-\alpha \cot \theta r_{2}^{T}+c_{x} r_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+c_{x} t_{z} \\
\frac{\beta}{\sin \theta} r_{2}^{T}+c_{y} r_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+c_{y} t_{z} \\
r_{3}^{T} & t_{z}
\end{array}\right]
$$

[^0]
A Linear Approach to Camera Calibration

$$
\frac{1}{\rho}\left[\begin{array}{cc}
\alpha r_{1}^{T}-\alpha \cot \theta r_{2}^{T}+c_{x} r_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+c_{x} t_{z} \\
\frac{\beta}{\sin \theta} r_{2}^{T}+c_{y} r_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+c_{y} t_{z} \\
r_{3}^{T} & t_{z}
\end{array}\right]=\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{l}
a_{1}^{T} \\
a_{2}^{T} \\
a_{3}^{T}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

The rows of a rotation matrix are unit-length, perpendicular to each other Intrinsics
$K=\left[\begin{array}{ccc}\alpha & -\alpha \cot \theta & c_{x} \\ 0 & \frac{\beta}{\sin \theta} & c_{y} \\ 0 & 0 & 1\end{array}\right]$

FP, Computer Vision: A
Modern Approach, Sec. 3.2.2

$$
\begin{aligned}
\rho & = \pm \frac{1}{\left\|a_{3}\right\|} \\
c_{x} & =\rho^{2}\left(a_{1} \cdot a_{3}\right) \\
c_{y} & =\rho^{2}\left(a_{2} \cdot a_{3}\right) \\
\theta & =\cos ^{-1}\left(-\frac{\left(a_{1} \times a_{3}\right) \cdot\left(a_{2} \times a_{3}\right)}{\left\|a_{1} \times a_{3}\right\| \cdot\left\|a_{2} \times a_{3}\right\|}\right)
\end{aligned}
$$

$$
\alpha=\rho^{2}\left\|a_{1} \times a_{3}\right\| \sin \theta
$$

$$
\beta=\rho^{2}\left\|a_{2} \times a_{3}\right\| \sin \theta
$$

Extrinsics

$$
\begin{aligned}
r_{1} & =\frac{a_{2} \times a_{3}}{\left\|a_{2} \times a_{3}\right\|} \\
r_{2} & =r_{3} \times r_{1} \\
r_{3} & =\rho a_{3} \\
T & =\rho K^{-1} b
\end{aligned}
$$

A Linear Approach to Camera Calibration

$\mathbf{P} m=0$

All 3D points should NOT be on the same plane. Otherwise, no solution

FP, Computer Vision: A
Modern Approach, Sec. 1.3

Camera Calibration with a 2D Plane

Harris Corner Detection
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI, 2000.

Calibration Patterns

https://github.com/arpg/Documentation/tree/master/Calibration
https://boofcv.org/index.php?title=Tutorial Camera Calibration

Further Reading

- Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 3 https://web.stanford.edu/class/cs231a/syllabus.html
- A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI. 2000. https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr9871.pdf
- EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV’09. https://www.tugraz.at/fileadmin/user upload/Institute/ICG/Images/team lepeti t/publications/lepetit ijcv08.pdf

[^0]: Scale

