Camera Projection

CS 4391 Introduction Computer Vision Professor Yu Xiang
The University of Texas at Dallas

Some slides of this lecture are courtesy Silvio Savarese

A Camera in the 3D World

PyBullet with a Camera

Pinhole Camera

Pinhole Camera

Central Projection in Camera Coordinates

$$
\begin{aligned}
& \text { Camera } \\
& \text { coordinates }
\end{aligned} \mathrm{P}=\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right] \rightarrow \mathrm{P}^{\prime}=\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]
$$

$$
\left\{\begin{array}{l}
x^{\prime}=f \frac{x}{z} \\
y^{\prime}=f \frac{y}{z}
\end{array}\right.
$$

Central Projection with Homogeneous Coordinates

$$
\begin{aligned}
& \mathrm{P}=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
z
\end{array}\right] \rightarrow \mathrm{P}^{\prime}=\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \longrightarrow\left[\begin{array}{l}
f \frac{x}{z} \\
f \frac{y}{z}
\end{array}\right] \quad\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \longrightarrow\left[\begin{array}{c}
f x \\
f y \\
z
\end{array}\right]=\underset{3 \times 4 \text { matrix }}{\left[\begin{array}{lll}
f & & 0 \\
& f & 0 \\
& & 1 \\
0
\end{array}\right]}\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]}
\end{aligned}
$$

Central projection

Principal Point Offset

Principle point: projection of the camera center

$$
\text { Principal point } \mathbf{p}=\left(p_{x}, p_{y}\right)
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \longrightarrow\left[\begin{array}{cc}
f \frac{x}{z} & +p_{x} \\
f \frac{y}{z} & +p_{y}
\end{array}\right]} \\
& {\left[\begin{array}{llll}
f & & p_{x} & 0 \\
& f & p_{y} & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]}
\end{aligned}
$$

From Metric to Pixels

From Metric to Pixels

- Metric space, i.e., meters $\left[\begin{array}{cccc}f & & p_{x} & 0 \\ & f & p_{y} & 0 \\ & & 1 & 0\end{array}\right]$
- Pixel space

$$
\left[\begin{array}{cccc}
\alpha_{x} & & x_{0} & 0 \\
& \alpha_{y} & y_{0} & 0 \\
& 1 & 0
\end{array}\right] \quad \begin{aligned}
& \alpha_{x}=f m_{x} \\
& \alpha_{y}=f m_{y} \\
& x_{0}=p_{x} m_{x} \\
& \\
& \text { per unit distance }
\end{aligned}
$$

Axis Skew

The skew parameter will be zero for most normal cameras.

$$
\left[\begin{array}{cccc}
\alpha_{x} & & x_{0} & 0 \\
& \alpha_{y} & y_{0} & 0 \\
& & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \longrightarrow\left[\begin{array}{c}
\alpha_{x} \frac{x}{z}+x_{0} \\
\alpha_{y} \frac{y}{z}+y_{0}
\end{array}\right] \quad\left[\begin{array}{cccc}
\alpha_{x} & -\alpha_{x} \cot (\theta) & x_{0} & 0 \\
& \frac{\alpha_{y}}{\sin (\theta)} & y_{0} & 0 \\
& & 1 & 0
\end{array}\right]
$$

Camera Intrinsics

$$
\left[\begin{array}{cccc}
\alpha_{x} & -\alpha_{x} \cot (\theta) & x_{0} & 0 \\
& \frac{\alpha_{y}}{\sin (\theta)} & y_{0} & 0 \\
& & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Camera intrinsics

$$
K=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right] \quad \begin{gathered}
\mathbf{X} \\
\\
\end{gathered}
$$

Camera Extrinsics: Camera Rotation and Translation

World Coordinates
$\mathbf{X}_{\mathrm{cam}}=R \mathbf{X}+\mathbf{t}$

Camera Projection Matrix $P=K[R \mid \mathbf{t}]$

- Homogeneous coordinates

Back-projection to a Ray in the World Coordinate

$$
\begin{gathered}
P=K[R \mid \mathbf{t}] \\
\mathbf{x}=P \mathbf{X}
\end{gathered}
$$

- The camera center O is on the ray
- $P^{+} \mathbf{X}$ is on the ray

$$
P^{+}=P^{T}\left(P P^{T}\right)^{-1}
$$

Pseudo-inverse
The ray can be written as

$$
\mathbf{X}(\lambda)=(1-\lambda) P^{+} \mathbf{x}+\lambda O
$$

- A pixel on the image backprojects to a ray in 3D

Back-projection to a 3D Point in Camera Coordinates

$$
\begin{gathered}
P=K[I \mid \mathbf{0}] \\
\mathbf{x}=K[I \mid \mathbf{0}] \mathbf{X}_{\mathrm{cam}}
\end{gathered}
$$

$$
\left[\begin{array}{ccc}
f_{x} & 0 & p_{x} \\
0 & f_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

$$
\begin{array}{ll}
x=f \frac{X}{Z}+p_{x} & \frac{X}{Z}=\frac{x-p_{x}}{f} \\
y=f \frac{Y}{Z}+p_{y} & \frac{Y}{Z}=\frac{y-p_{y}}{f}
\end{array}
$$

Back-projection to a 3D Point in Camera Coordinates

3D camera coordinates $\left[\begin{array}{c}d \frac{x-p_{x}}{f_{x}} \\ d \frac{y-p_{y}}{f_{y}} \\ d\end{array}\right]$
Equivalently

$$
\begin{gathered}
\mathbf{x}=K[I \mid \mathbf{0}] \mathbf{X}_{\mathrm{cam}} \\
K^{-1} \mathbf{x}
\end{gathered}
$$

${ }^{30}$ point with depph $d: d K^{-1} \mathbf{x}$

The Pinhole Camera Model

- Camera projection matrix: intrinsics and extrinsics

$$
P=\mathbb{P}[\boldsymbol{R} \mid t]
$$

Further Reading

- Section 2.1, Computer Vision, Richard Szeliski
- Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Chapter 6, Camera Models
- Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 2 https://web.stanford.edu/class/cs231a/syllabus.html
- Image formation by lenses https://courses.lumenlearning.com/physics/chapter/25-6-image-formation-byenses/
- Distortion (Wikipedia) https://en.wikipedia.org/wiki/Distortion (optics)

