Camera Projection

CS 4391 Introduction Computer Vision Professor Yu Xiang The University of Texas at Dallas

Some slides of this lecture are courtesy Silvio Savarese

NIV

A Camera in the 3D World

PyBullet with a Camera

Yu Xiang

Pinhole Camera

Pinhole Camera

Cannot be implemented in practice Useful for theoretic analysis

Central Projection in Camera Coordinates

Yu Xiang

Central Projection with Homogeneous Coordinates

Central projection

Principal Point Offset

Principle point: projection of the camera center

2/26/2024

From Metric to Pixels

Pixels, bottom-left coordinate systems

From Metric to Pixels

• Metric space, i.e., meters $\begin{bmatrix} f & p_x & 0 \\ c & 0 \end{bmatrix}$

• Pixel space

$$\begin{bmatrix} J & p_y & 0 \\ & 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} \alpha_x & x_0 & 0 \\ & \alpha_y & y_0 & 0 \\ & & 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} \alpha_x = fm_x \\ & \alpha_y = fm_y \\ & x_0 = p_x m_x \end{bmatrix}$$

 m_x, m_y Number of pixel per unit distance

 $y_0 = p_y m_y$

The skew parameter will be zero for most normal cameras.

$$\begin{bmatrix} \alpha_x & x_0 & 0 \\ & \alpha_y & y_0 & 0 \\ & & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} \alpha_x \frac{x}{z} + x_0 \\ \alpha_y \frac{y}{z} + y_0 \end{bmatrix}$$

$$\begin{bmatrix} \alpha_x & -\alpha_x \cot(\theta) & x_0 & 0 \\ & \frac{\alpha_y}{\sin(\theta)} & y_0 & 0 \\ & & 1 & 0 \end{bmatrix}$$

https://blog.immenselyhappy.com/post/camera-axis-skew/

2/26/2024

Camera Intrinsics

$$\begin{bmatrix} \alpha_x & -\alpha_x \cot(\theta) & x_0 & 0 \\ & \frac{\alpha_y}{\sin(\theta)} & y_0 & 0 \\ & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
Camera intrinsics
$$K = \begin{bmatrix} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & 1 \end{bmatrix} \quad \begin{array}{l} \mathbf{x} = K \begin{bmatrix} I | \mathbf{0} \end{bmatrix} \mathbf{X}_{\text{cam}}$$

$$K = \begin{bmatrix} \alpha_y & y_0 \\ & 1 \end{bmatrix} \quad \begin{array}{l} \mathbf{x}_{11} = K \begin{bmatrix} I | \mathbf{0} \end{bmatrix} \mathbf{X}_{\text{cam}}$$

Homogeneous coordinates

Camera Extrinsics: Camera Rotation and Translation

Camera Projection Matrix $\,P = K[R|\mathbf{t}]\,$

• Homogeneous coordinates

Back-projection to a Ray in the World Coordinate

- The camera center O is on the ray
- $P^+\mathbf{x}$ is on the ray
 - $P^+ = P^T (PP^T)^{-1}$

Pseudo-inverse

The ray can be written as

 $\mathbf{X}(\lambda) = (1 - \lambda)P^{+}\mathbf{x} + \lambda O$

A pixel on the image backprojects to a ray in 3D

Back-projection to a 3D Point in Camera Coordinates

Back-projection to a 3D Point in Camera Coordinates

Equivalently

$$\mathbf{x} = K[I|\mathbf{0}]\mathbf{X}_{ ext{cam}}$$

 $K^{-1}\mathbf{x}$
BD point with depth d : $dK^{-1}\mathbf{x}$

The Pinhole Camera Model

• Camera projection matrix: intrinsics and extrinsics

Further Reading

- Section 2.1, Computer Vision, Richard Szeliski
- Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Chapter 6, Camera Models
- Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 2 <u>https://web.stanford.edu/class/cs231a/syllabus.html</u>
- Image formation by lenses <u>https://courses.lumenlearning.com/physics/chapter/25-6-image-formation-by-lenses/</u>
- Distortion (Wikipedia) https://en.wikipedia.org/wiki/Distortion (optics)