
CS 4391 Introduction to Computer Vision
Homework 5 ∗

Professor Yu Xiang

April 16, 2024

Download the homework5_programming.zip file from eLearning, Assignments, Homework 5.
Finish the following programming problems and submit your scripts to eLearning. You can zip all
files for submission. Our TA will run your scripts to verify them.

Install the Python packages needed by

• pip install -r requirement.txt

Here are some useful resources:

• Python basics https://pythonbasics.org/

• Numpy https://numpy.org/doc/stable/user/basics.html

• OpenCV https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html

For this homework, you cannot use any deep learning libraries such as PyTorch or
TensorFlow.

When using back-propagation to train neural networks, we compute local gradients of each layer
and combine them to learn the weights in the neural networks. Fig. 1 illustrates this process. In
this example, we have a layer that takes a matrix (tensor) 𝑥 with dimension 𝐷𝑥 ×𝑀𝑥 and a matrix
(tensor) 𝑦 with dimension 𝐷𝑦 ×𝑀𝑦 as input. The output of this layer is 𝑧 with dimension 𝐷𝑧 ×𝑀𝑧.

In the forward function, this layer computes the output 𝑧 given 𝑥 and 𝑦. It can also output a cache
object that contains all the values needed during back-propagation.

In the backward function, this layer receives the upstream gradients and the cache object, and
compute the downstream gradients. In this example, the upstream gradients is 𝜕𝐿

𝜕𝑧 , where 𝐿 denotes
the final loss function of the network. Note that the loss function outputs a scalar. Therefore, 𝜕𝐿

𝜕𝑧
is with dimension 𝐷𝑧 ×𝑀𝑧 that is the same as 𝑧. We use chain rule to compute the downstream
gradients

𝜕𝐿
𝜕𝑥

=
𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑥

,
𝜕𝐿
𝜕𝑦

=
𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑦

,

∗This homework is adapted from Dr. Justin Johnson at the University of Michigan

1

https://pythonbasics.org/
https://numpy.org/doc/stable/user/basics.html
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html


Layer
Upstream gradient

Local gradient

Jacobian matrix

Local gradient

Jacobian matrix
Downstream gradient

Figure 1: Back-propagation of gradients.

where 𝜕𝑧
𝜕𝑥 and 𝜕𝑧

𝜕𝑦 are the local gradients in this layer. They are the Jacobian matrices:

(
𝜕𝑧
𝜕𝑥

)𝑖𝑗 =
𝜕𝑧𝑖
𝜕𝑥𝑗

, (
𝜕𝑧
𝜕𝑦

)𝑖𝑗 =
𝜕𝑧𝑖
𝜕𝑦𝑗

.

We can consider 𝜕𝑧
𝜕𝑥 as a matrix with dimension (𝐷𝑧 ×𝑀𝑧) × (𝐷𝑥 ×𝑀𝑥). Then we can do a matrix-

vector multiplication to compute 𝜕𝐿
𝜕𝑥 = 𝜕𝐿

𝜕𝑧
𝜕𝑧
𝜕𝑥 , which have the same dimension as 𝑥 . Similarly, we

can compute 𝜕𝐿
𝜕𝑦 = 𝜕𝐿

𝜕𝑧
𝜕𝑧
𝜕𝑦 .

In the following problems, you need to implement the fully-connected layer, the ReLU layer, the
softmax loss function and the L2 regularization loss function in neuralnet/layers.py. After your
implementation, you need to use the script neuralnet/gradcheck layers.py to perform numeric
gradient checking on your implementations. Given a function 𝑓 ∶  → , we can approximate
the gradient of 𝑓 at a point 𝑥0 ∈  using central difference:

𝜕𝑓
𝜕𝑥

(𝑥0) =
𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0 − ℎ)

2ℎ
. (0.1)

The difference between all numeric and analytic gradients should be less than 10−9. Keep
in mind that numeric gradient checking does not check whether you have correctly implemented
the forward pass. It only checks whether the backward pass you have implemented actually
computes the gradient of the forward pass that you implemented.

2



Problem 1
(3 points) Back-propagation of fully connected layer.

Implement the fc_forward() function and the fc_backward() function in neuralnet/layers.py after
reading the following derivation.

The input to a FC layer is a tensor 𝑥 with shape (𝑁 ,𝐷𝑥), where 𝑁 is the batch size and 𝐷𝑥 is the
dimension of the feature. The weight matrix 𝑊 in the FC layer is with shape (𝐷𝑥 , 𝐷𝑤) and the
bias 𝑏 of the FC layer is a vector with dimension 𝐷𝑤. The output of the FC layer is a tensor 𝑦 with
shape (𝑁 ,𝐷𝑤). The 𝑖the row of the 𝑦 matrix is computed by

𝑦𝑖 = 𝑥𝑖𝑊 + 𝑏, (1.1)

where 𝑦𝑖 and 𝑥𝑖 are the 𝑖th row of 𝑦 and 𝑥 , respectively, i.e., the 𝑖th data point in the batch. With
all the data points, we have

⎡
⎢
⎢
⎢
⎢
⎣

𝑦1,1 𝑦1,2 ⋯ 𝑦1,𝐷𝑤

𝑦2,1 𝑦2,2 ⋯ 𝑦2,𝐷𝑤

⋮ ⋮ ⋮ ⋮
𝑦𝑁 ,1 𝑦𝑁 ,2 ⋯ 𝑦𝑁 ,𝐷𝑤

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝐷𝑥

𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝐷𝑥

⋮ ⋮ ⋮ ⋮
𝑥𝑁 ,1 𝑥𝑁 ,2 ⋯ 𝑥𝑁 ,𝐷𝑥

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑤1,1 𝑤1,2 ⋯ 𝑤1,𝐷𝑤

𝑤2,1 𝑤2,2 ⋯ 𝑤2,𝐷𝑤

⋮ ⋮ ⋮ ⋮
𝑤𝐷𝑥 ,1 𝑤𝐷𝑥 ,2 ⋯ 𝑤𝐷𝑥 ,𝐷𝑤

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

𝑏1 𝑏2 ⋯ 𝑏𝐷𝑤

𝑏1 𝑏2 ⋯ 𝑏𝐷𝑤

⋮ ⋮ ⋮ ⋮
𝑏1 𝑏2 ⋯ 𝑏𝐷𝑤

⎤
⎥
⎥
⎥
⎥
⎦

.

(1.2)

In the backward function of the FC layer, we receive upstream gradients 𝜕𝐿
𝜕𝑦 with shape (𝑁 ,𝐷𝑤).

We need to compute the downstream gradients 𝜕𝐿
𝜕𝑥 , 𝜕𝐿

𝜕𝑊 and 𝜕𝐿
𝜕𝑏 . To do so, let’s first consider

𝜕𝐿
𝜕𝑥

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⋅
𝜕𝑦𝑖,𝑗
𝜕𝑥

(1.3)

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝑤1,𝑗 𝑤2,𝑗 ⋯ 𝑤𝐷𝑥 ,𝑗
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(the ith row) (1.4)

=
𝐷𝑤

∑
𝑗=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝐿
𝜕𝑦1,𝑗

𝑤1,𝑗
𝜕𝐿
𝜕𝑦1,𝑗

𝑤2,𝑗 ⋯ 𝜕𝐿
𝜕𝑦1,𝑗

𝑤𝐷𝑥 ,𝑗

⋮ ⋮ ⋮ ⋮
𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤1,𝑗
𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤2,𝑗 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤𝐷𝑥 ,𝑗

⋮ ⋮ ⋮ ⋮
𝜕𝐿

𝜕𝑦𝑁 ,𝑗
𝑤1,𝑗

𝜕𝐿
𝜕𝑦𝑁 ,𝑗

𝑤2,𝑗 ⋯ 𝜕𝐿
𝜕𝑦𝑁 ,𝑗

𝑤𝐷𝑥 ,𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.5)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑𝐷𝑤
𝑗=1

𝜕𝐿
𝜕𝑦1,𝑗

𝑤1,𝑗 ∑𝐷𝑤
𝑗=1

𝜕𝐿
𝜕𝑦1,𝑗

𝑤2,𝑗 ⋯ 𝜕𝐿
𝜕𝑦1,𝑗

𝑤𝐷𝑥 ,𝑗

⋮ ⋮ ⋮ ⋮
∑𝐷𝑤

𝑗=1
𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤1,𝑗 ∑𝐷𝑤
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤2,𝑗 ⋯ ∑𝐷𝑤
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤𝐷𝑥 ,𝑗

⋮ ⋮ ⋮ ⋮
∑𝐷𝑤

𝑗=1
𝜕𝐿

𝜕𝑦𝑁 ,𝑗
𝑤1,𝑗 ∑𝐷𝑤

𝑗=1
𝜕𝐿

𝜕𝑦𝑁 ,𝑗
𝑤2,𝑗 ⋯ ∑𝐷𝑤

𝑗=1
𝜕𝐿

𝜕𝑦𝑁 ,𝑗
𝑤𝐷𝑥 ,𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.6)

=
𝜕𝐿
𝜕𝑦

𝑊 𝑇 . (1.7)

3



We have a compact formula to compute the downstream gradients of 𝑥 as

𝜕𝐿
𝜕𝑥

=
𝜕𝐿
𝜕𝑦

𝑊 𝑇 . (1.8)

Similarly, we have

𝜕𝐿
𝜕𝑊

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⋅
𝜕𝑦𝑖,𝑗
𝜕𝑊

(1.9)

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⎡
⎢
⎢
⎢
⎢
⎣

0 ⋯ 𝑥𝑖,1 ⋯ 0
0 ⋯ 𝑥𝑖,2 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 𝑥𝑖,𝐷𝑥 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

the jth column

(1.10)

=
𝑁

∑
𝑖=1

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,1 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,1 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,1
𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,2 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,2 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,2
⋮ ⋮ ⋮ ⋮ ⋮

𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,𝐷𝑥 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,𝐷𝑥 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,𝐷𝑥

⎤
⎥
⎥
⎥
⎥
⎦

(1.11)

=

⎡
⎢
⎢
⎢
⎢
⎣

∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,1 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,1 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,1
∑𝑁

𝑖=1
𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,2 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,2 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,2
⋮ ⋮ ⋮ ⋮ ⋮

∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,𝐷𝑥 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,𝐷𝑥 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,𝐷𝑥

⎤
⎥
⎥
⎥
⎥
⎦

(1.12)

= 𝑥𝑇 𝜕𝐿
𝜕𝑦

. (1.13)

Therefore,
𝜕𝐿
𝜕𝑊

= 𝑥𝑇 𝜕𝐿
𝜕𝑦

. (1.14)

Lastly, we compute

𝜕𝐿
𝜕𝑏

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⋅
𝜕𝑦𝑖,𝑗
𝜕𝑏

(1.15)

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

[0 ⋯ 1 ⋯ 0]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

the jth column

(1.16)

=
𝑁

∑
𝑖=1

[
𝜕𝐿
𝜕𝑦𝑖,1

⋯ 𝜕𝐿
𝜕𝑦𝑖,𝑗

⋯ 𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤 ] (1.17)

= [∑
𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,1

⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤 ] (1.18)

= 𝟏𝑇
𝜕𝐿
𝜕𝑦

. (1.19)

4



That is
𝜕𝐿
𝜕𝑏

= 𝟏𝑇
𝜕𝐿
𝜕𝑦

, (1.20)

where 𝟏 denotes a column vector with all 1s.

5



Problem 2
(2 points) Back-propagation of ReLU layer.

Implement the relu_forward() function and the relu_backward() function in neuralnet/layers.py.
The ReLU activation function is defined as

ReLU(𝑥) = max(0, 𝑥) (2.1)

=

{
𝑥, if 𝑥 ≥ 0
0, otherwise,

(2.2)

for each element in a tensor.

6



Problem 3
(3 points) Back-propagation of Softmax Loss Function.

Implement the softmax_loss() function in neuralnet/layers.py after reading the following material.

The input to a softmax loss function layer is a tensor 𝑥 with shape (𝑁 , 𝐶), where 𝑁 is the batch
size and 𝐶 is the number of categories to be classified. The softmax loss function first converts the
scores 𝑥 into a set of 𝑁 probability distributions over the categories, defined as:

𝑝𝑖,𝑐 =
exp(𝑥𝑖,𝑐)

∑𝐶
𝑗=1 exp(𝑥𝑖,𝑗)

, 𝑖 = 1, 2,… , 𝑁 , 𝑐 = 1, 2,… , 𝐶. (3.1)

Then the softmax loss function is defined as

𝐿 = −
1
𝑁

𝑁

∑
𝑖=1

log(𝑝𝑖,𝑦𝑖), (3.2)

where 𝑦𝑖 ∈ {1, 2,… , 𝐶} is the ground truth label for the 𝑖th data point.

A naive implementation of the softmax loss function can result in numeric instability when the
value of some 𝑥𝑖,𝑐 in Eq. (3.1) is large. Then it can cause overflow with exp(𝑥𝑖,𝑐). To avoid this, we
can compute the probabilities by

𝑝𝑖,𝑐 =
exp(𝑧𝑖,𝑐)

∑𝐶
𝑗=1 exp(𝑧𝑖,𝑗)

=
exp(𝑥𝑖,𝑐 −𝑀𝑖)

∑𝐶
𝑗=1 exp(𝑥𝑖,𝑗 −𝑀𝑖)

, 𝑖 = 1, 2,… , 𝑁 , 𝑐 = 1, 2,… , 𝐶, (3.3)

where 𝑀𝑖 = max𝑐 𝑥𝑖,𝑐, i.e., the maximum score for data point 𝑖 among the categories, and 𝑧𝑖,𝑐 =
𝑥𝑖,𝑐 −𝑀𝑖. By doing so, we can avoid overflow with the exponential. It is not hard to see that

𝑝𝑖,𝑐 =
exp(𝑥𝑖,𝑐 −𝑀𝑖)

∑𝐶
𝑗=1 exp(𝑥𝑖,𝑗 −𝑀𝑖)

=
exp(𝑥𝑖,𝑐) exp(−𝑀𝑖)

∑𝐶
𝑗=1 exp(𝑥𝑖,𝑗) exp(−𝑀𝑖)

=
exp(𝑥𝑖,𝑐)

∑𝐶
𝑗=1 exp(𝑥𝑖,𝑗)

. (3.4)

Your softmax implementation should use this max-subtraction trick for numeric stability. You can
run the script neuralnet/check softmax stability.py to check the numeric stability of your softmax
loss implementation.

In the backward function of the softmax loss function, we need to compute the downstream
gradients 𝜕𝐿

𝜕𝑥 with shape (𝑁 , 𝐶). First, we compute the gradients of 𝐿 with respect to 𝑝𝑖,𝑦𝑖 in Eq. (3.2)
as

𝜕𝐿
𝜕𝑝𝑖,𝑦𝑖

= −
1

𝑁𝑝𝑖,𝑦𝑖
. (3.5)

Note that
𝜕𝐿
𝜕𝑝𝑖,𝑐

= 0, ∀𝑐 ≠ 𝑦𝑖. (3.6)

7



Next, we compute

𝜕𝐿
𝜕𝑧𝑖,𝑐

=
𝑁

∑
𝑖′=1

𝐶

∑
𝑐′=1

𝜕𝐿
𝜕𝑝𝑖′,𝑐′

⋅
𝜕𝑝𝑖′,𝑐′

𝜕𝑧𝑖,𝑐

=
𝐶

∑
𝑐′=1

𝜕𝐿
𝜕𝑝𝑖,𝑐′

⋅
𝜕𝑝𝑖,𝑐′

𝜕𝑧𝑖,𝑐

=
𝜕𝐿
𝜕𝑝𝑖,𝑦𝑖

⋅
𝜕𝑝𝑖,𝑦𝑖

𝜕𝑧𝑖,𝑐
. (3.7)

From the lecture, we know that
𝜕𝑝𝑖,𝑦𝑖

𝜕𝑧𝑖,𝑐
= 𝑝𝑖,𝑦𝑖(𝛿𝑦𝑖,𝑐 − 𝑝𝑖,𝑐), (3.8)

where

𝛿𝑦𝑖,𝑐 =

{
1, if 𝑐 = 𝑦𝑖
0, otherwise.

(3.9)

By substituting Eq. (3.5) and Eq. (3.8) into Eq. (3.7), we have

𝜕𝐿
𝜕𝑧𝑖,𝑐

= −
1

𝑁𝑝𝑖,𝑦𝑖
⋅ 𝑝𝑖,𝑦𝑖(𝛿𝑦𝑖,𝑐 − 𝑝𝑖,𝑐) (3.10)

=
𝑝𝑖,𝑐 − 𝛿𝑦𝑖,𝑐

𝑁
(3.11)

Lastly, we have 𝑧𝑖,𝑐 = 𝑥𝑖,𝑐 − 𝑀𝑖. It can be shown that this max-subtraction does not change the
downstream gradients. Therefore, we have

𝜕𝐿
𝜕𝑥𝑖,𝑐

=
𝜕𝐿
𝜕𝑧𝑖,𝑐

=
𝑝𝑖,𝑐 − 𝛿𝑦𝑖,𝑐

𝑁
. (3.12)

8



Problem 4
(2 points) Back-propagation of L2 regularization.

Implement the l2_regularization() function in neuralnet/layers.py after reading the following
material.

L2 regularization implements the L2 regularization loss on the parameters in the network:

𝐿(𝑊 ) =
𝜆
2
‖𝑊 ‖2 =

𝜆
2
∑
𝑖
𝑊 2

𝑖 , (4.1)

where the sum ranges over all scalar elements of the weight matrix W and 𝜆 is a hyperparameter
controlling the regularization strength. The downstream gradients of this loss function is

𝜕𝐿
𝜕𝑊𝑖

= 𝜆𝑊𝑖, (4.2)

for each element in 𝑊 .

9


	Problem 1
	Problem 2
	Problem 3
	Problem 4

