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Multi-Object Tracking
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Autonomous driving

Visual surveillance

Sport Analysis

Robot navigation



Batch Mode vs. Online Mode
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Tracking by Detection

4



Data Association
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Challenges

Noisy detection: false alarms and missing detections
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Challenges

Occlusion
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Similarity Function for Data Association
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Learning to Track

‰ ( ),Similarity ύ Ễ ‰ ( ),ύ

Different features/cues between targets and detections

Weights to combine different cues
(to be learned)
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Å Appearance
Å Location
Å Motion
Etc.



Offline-learning vs. Online-learning
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Offline-learning vs. Online-learning
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Offline-learning vs. Online-learning
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The target is 
tracked

The target is 
occluded

The target is 
tracked again

Our Solution: Tracking by Decision Making
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Inverse Reinforcement Learning
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Comparison between Different Learning Strategies
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Comparison between Different Learning Strategies
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Outline

ÅMarkov Decision Process (MDP) for a Single Target

ÅOnline Multi-Object Tracking with MDPs

ÅExperiments

ÅConclusion

17



Outline

ÅMarkov Decision Process (MDP) for a Single Target
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Markov Decision Process for a Single Target
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Markov Decision Process for a Single Target
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Markov Decision Process for a Single Target
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Markov Decision Process for a Single Target
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Markov Decision Process for a Single Target

TLD Tracker. Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. TPAMI, 34(7):1409ς1422, 2012.23
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Template Tracking in Tracked States
Frame 50 Frame 51
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Template Tracking in Tracked States
Frame 50 Frame 51
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Template Tracking in Tracked States
Frame 50 Frame 51
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Template Tracking in Tracked States
Frame 50 Frame 51

Tracked
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Template Tracking in Tracked States
Frame 50 Frame 57
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Template Tracking in Tracked States
Frame 50 Frame 57
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Template Tracking in Tracked States
Frame 50 Frame 57
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Template Tracking in Tracked States
Frame 50 Frame 57

Tracked

Lost
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Markov Decision Process for a Single Target

If lost for more than Tframes
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Data Association in Lost States
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Learning the Similarity Function
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Hard negative examples

Inverse reinforcement learning: tracking objects in training videos!



Inverse Reinforcement Learning
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Ground truth trajectory

Supervision



Inverse Reinforcement Learning
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Ground truth trajectory

Supervision



Inverse Reinforcement Learning
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Ground truth trajectory

Supervision
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Inverse Reinforcement Learning
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Inverse Reinforcement Learning
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Ground truth trajectory
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Outline

ÅMarkov Decision Process (MDP) for a Single Target

ÅOnline Multi-Object Tracking with MDPs
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ÅConclusion
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Ensemble MDPs for Online Multi-Object Tracking
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Step 1: Process tracked targets
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Step 2: Process lost targets
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Step 3: Initialize new targets
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Terminate detection
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Online Multi-Object Tracking with MDPs
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Outline

ÅMarkov Decision Process (MDP) for a Single Target
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Experiments: Dataset

ÅMultiple Object Tracking Benchmark [1]
Å11 training sequences
Å11 test sequences
ÅObject detections from the ACF detector [2]

[1] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler. MOTChallenge2015: Towards a Benchmark for Multi-Target Tracking. 
arXiv:1504.01942 [cs], 2015.
[2] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 36(8):1532ς1545, 2014. 48



Experiments: Analysis on Validation Set

ÅContribution of different components
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Experiments: Analysis on Validation Set

ÅContribution of different components
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MOTA: multiple object tracking accuracy
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MOTA: multiple object tracking accuracy
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MOTA: multiple object tracking accuracy



Experiments: Analysis on Validation Set

ÅContribution of different components
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Experiments: Analysis on Validation Set

ÅContribution of different components
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